Search results for: pillar structure
5401 Development of a Model for the Redesign of Plant Structures
Authors: L. Richter, J. Lübkemann, P. Nyhuis
Abstract:
In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.Keywords: change driven factory redesign, factory planning, plant structure, flexibility
Procedia PDF Downloads 2705400 Governance Disclosure Quality and Cooperative Performance in Malaysia
Authors: Intan Waheedah Othman, Maslinawati Mohamad, Azizah Abdullah
Abstract:
Few discussions were made on cooperative governance reforms despite the fact that cooperative movements operate and compete in an identical business environment as the private as well as the public corporations. Due to the scarcity of research examining the issue of governance among cooperatives, this paper is motivated to examine the extent of governance compliance and disclosure among cooperatives, hence the relationship between cooperative governance and its firm performance. Results from the study provide empirical evidence that disclosure on ownership structure and exercise of control rights was found to have significant negative relationship with cooperative firm performance.Keywords: cooperative, governance, firm performance, Malaysia
Procedia PDF Downloads 5415399 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)
Authors: Sultan Ben Jaber
Abstract:
Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor
Procedia PDF Downloads 705398 A Textile-Based Scaffold for Skin Replacements
Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel
Abstract:
The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization
Procedia PDF Downloads 2575397 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 1225396 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method
Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha
Abstract:
In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency
Procedia PDF Downloads 1525395 Capability of Intelligent Techniques for Friction Factor Simulation in Water Channels
Authors: Kiyoumars Roushangar, Shabnam Mirheidarian
Abstract:
This study proposes metamodel approaches as a new intelligent technique for the explicit formulation of friction factors of water conveyance structures. For this purpose, experimental data of a movable bed flume with dune bed form were used. Analyzing the result clears the high capability of metamodel approaches (MNE= 0.05, R= 0.92) as a powerful tool for optimizing and explicit simulation of Manning's roughness coefficients of water conveyance structures compared to other nonlinear approaches.Keywords: intelligent techniques, explicit simulation, roughness coefficient, water conveyance structure
Procedia PDF Downloads 4775394 Enhancing Academic and Social Skills of Elementary School Students with Autism Spectrum Disorder by an Intensive and Comprehensive Teaching Program
Authors: Piyawan Srisuruk, Janya Boonmeeprasert, Romwarin Gamlunglert, Benjamaporn Choikhruea, Ornjira Jaraepram, Jarin Boonsuchat, Sakdadech Singkibud, Kusalaporn Chaiudomsom, Chanatiporn Chonprai, Pornchanaka Tana, Suchat Paholpak
Abstract:
Objective: To develop an Intensive and comprehensive program (ICP) for the Inclusive Class Teacher (ICPICT) to teach elementary students (ES) with ASD in order to enhance the students’ academic and social skills (ASS) and to study the effect of the teaching program. Methods: The purposive sample included 15 Khon Kaen inclusive class teachers and their 15 elementary students. All the students were diagnosed by a child and adolescent psychiatrist to have DSM-5 level 1 ASD. The study tools included 1) an ICP to teach teachers about ASD, a teaching method to enhance academic and social skills for ES with ASD, and an assessment tool to assess the teacher’s knowledge before and after the ICP. 2) an ICPICT to teach ES with ASD to enhance their ASS. The project taught 10 sessions, 3 hours each. The ICPICT had its teaching structure. Teaching media included: pictures, storytelling, songs, and plays. The authors taught and demonstrated to the participant teachers how to teach with the ICPICT until the participants could display the correct teaching method. Then the teachers taught ICPICT at school by themselves 3) an assessment tool to assess the students’ ASS before and after the completion of the study. The ICP to teach the teachers, the ICPICT, and the relevant assessment tools were developed by the authors and were adjusted until consensus agreed as appropriate for researching by 3 curriculum of teaching children with ASD experts. The data were analyzed by descriptive and analytic statistics via SPSS version 26. Results: After the briefing, the teachers increased the mean score, though not with statistical significance, of knowledge of ASD and how to teach ES with ASD on ASS (p = 0.13). Teaching ES with ASD with the ICPICT could increase the mean scores of the students’ skills in learning and expressing social emotions, relationships with a friend, transitioning, and skills in academic function 3.33, 2.27, 2.94, and 3.00 scores (full scores were 18, 12, 15 and 12, Paired T-Test p = 0.007, 0.013, 0.028 and 0.003 respectively). Conclusion: The program to teach academic and social skills simultaneously in an intensive and comprehensive structure could enhance both the academic and social skills of elementary students with ASD. Keywords: Elementary students, autism spectrum, academic skill, social skills, intensive program, comprehensive program, integration.Keywords: academica and social skills, students with autism, intensive and comprehensive, teaching program
Procedia PDF Downloads 645393 Rhizosphere Microbial Communities in Fynbos Endemic Legumes during Wet and Dry Seasons
Authors: Tiisetso Mpai, Sanjay K. Jaiswal, Felix D. Dakora
Abstract:
The South African Cape fynbos biome is a global biodiversity hotspot. This biome contains a diversity of endemic shrub legumes, including Polhillia, Wiborgia, and Wiborgiella species, which are important for ecotourism as well as for improving soil fertility status. This is due to their proven N₂-fixing abilities when in association with compatible soil bacteria. In fact, Polhillia, Wiborgia, and Wiborgiella species have been reported to derive over 61% of their needed nitrogen through biological nitrogen fixation and to exhibit acid and alkaline phosphatase activity in their rhizospheres. Thus, their interactions with soil microbes may explain their survival mechanisms under the continued summer droughts and acidic, nutrient-poor soils in this region. However, information regarding their rhizosphere microbiome is still unavailable, yet it is important for Fynbos biodiversity management. Therefore, the aim of this study was to assess the microbial community structures associated with rhizosphere soils of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea, and Wiborgiella sessilifolia growing at different locations of the South African Cape fynbos, during the wet and dry seasons. The hypothesis is that the microbial communities in these legume rhizospheres are the same type and are not affected by the growing season due to the restricted habitat of these wild fynbos legumes. To obtain the results, DNA was extracted from 0.5 g of each rhizosphere soil using PowerSoil™ DNA Isolation Kit, and sequences were obtained using the 16S rDNA Miseq Illumina technology. The results showed that in both seasons, bacteria were the most abundant microbial taxa in the rhizosphere soils of all five legume species, with Actinobacteria showing the highest number of sequences (about 30%). However, over 19.91% of the inhabitants in all five legume rhizospheres were unclassified. In terms of genera, Mycobacterium and Conexibacter were common in rhizosphere soils of all legumes in both seasons except for W. obcordata soils sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In conclusion, plant species and season were found to be the main drivers of microbial community structure in Cape fynbos, with the wet season being more dominant in shaping microbial diversity relative to the dry season. Wiborgia obcordata had a greater influence on microbial community structure than the other four legume species.Keywords: 16S rDNA, Cape fynbos, endemic legumes, microbiome, rhizosphere
Procedia PDF Downloads 1515392 Hamilton-Jacobi Treatment of Damped Motion
Authors: Khaled I. Nawafleh
Abstract:
In this work, we apply the method of Hamilton-Jacobi to obtain solutions of Hamiltonian systems in classical mechanics with two certain structures: the first structure plays a central role in the theory of time-dependent Hamiltonians, whilst the second is used to treat classical Hamiltonians, including dissipation terms. It is proved that the generalization of problems from the calculus of variation methods in the nonstationary case can be obtained naturally in Hamilton-Jacobi formalism. Then, another expression of geometry of the Hamilton Jacobi equation is retrieved for Hamiltonians with time-dependent and frictional terms. Both approaches shall be applied to many physical examples.Keywords: Hamilton-Jacobi, time dependent lagrangians, dissipative systems, variational principle
Procedia PDF Downloads 1795391 Study of Motion of Impurity Ions in Poly(Vinylidene Fluoride) from View Point of Microstructure of Polymer Solid
Authors: Yuichi Anada
Abstract:
Electrical properties of polymer solid is characterized by dielectric relaxation phenomenon. Complex permittivity shows a high dependence on frequency of external stimulation in the broad frequency range from 0.1mHz to 10GHz. The complex-permittivity dispersion gives us a lot of useful information about the molecular motion of polymers and the structure of polymer aggregates. However, the large dispersion of permittivity at low frequencies due to DC conduction of impurity ions often covers the dielectric relaxation in polymer solid. In experimental investigation, many researchers have tried to remove the DC conduction experimentally or analytically for a long time. On the other hand, our laboratory chose another way of research for this problem from the point of view of a reversal in thinking. The way of our research is to use the impurity ions in the DC conduction as a probe to detect the motion of polymer molecules and to investigate the structure of polymer aggregates. In addition to the complex permittivity, the electric modulus and the conductivity relaxation time are strong tools for investigating the ionic motion in DC conduction. In a non-crystalline part of melt-crystallized polymers, free spaces with inhomogeneous size exist between crystallites. As the impurity ions exist in the non-crystalline part and move through these inhomogeneous free spaces, the motion of ions reflects the microstructure of non-crystalline part. The ionic motion of impurity ions in poly(vinylidene fluoride) (PVDF) is investigated in this study. Frequency dependence of the loss permittivity of PVDF shows a characteristic of the direct current (DC) conduction below 1 kHz of frequency at 435 K. The electric modulus-frequency curve shows a characteristic of the dispersion with the single conductivity relaxation time. Namely, it is the Debye-type dispersion. The conductivity relaxation time analyzed from this curve is 0.00003 s at 435 K. From the plot of conductivity relaxation time of PVDF together with the other polymers against permittivity, it was found that there are two group of polymers; one of the group is characterized by small conductivity relaxation time and large permittivity, and another is characterized by large conductivity relaxation time and small permittivity.Keywords: conductivity relaxation time, electric modulus, ionic motion, permittivity, poly(vinylidene fluoride), DC conduction
Procedia PDF Downloads 1705390 Mechanical Properties of Ternary Metal Nitride Ti1-xTaxN Alloys from First-Principles
Authors: M. Benhamida, Kh. Bouamama, P. Djemia
Abstract:
We investigate by first-principles pseudo-potential calculations the composition dependence of lattice parameter, hardness and elastic properties of ternary disordered solid solutions Ti(1-x)Ta(x)N (1>=x>=0) with B1-rocksalt structure. Calculations use the coherent potential approximation with the exact muffin-tin orbitals (EMTO) and hardness formula for multicomponent covalent solid solution proposed. Bulk modulus B shows a nearly linear behaviour whereas not C44 and C’=(C11-C12)/2 that are not monotonous. Influences of vacancies on hardness of off-stoichiometric transition-metal nitrides TiN(1−x) and TaN(1−x) are also considered.Keywords: transition metal nitride materials, elastic constants, hardness, EMTO
Procedia PDF Downloads 4305389 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3875388 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level
Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni
Abstract:
In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.Keywords: tropocollagen, multiscale model, fibrils, knee ligaments
Procedia PDF Downloads 1285387 A First-Principles Molecular Dynamics Study on Li+ Solvation Structures in THF/MTHF Containing Electrolytes for Lithium Metal Batteries.
Authors: Chiu-Neng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
In lithium-ion batteries (LIBs) the solid–electrolyte interphase (SEI) layer, which forms on the anode surface, plays a crucial role in stabilizing battery performance. Over the past two decades, efforts to enhance LIB electrolytes have primarily focused on refining the quality of SEI components. Despite these endeavors, several observed phenomena remain inadequately improved the SEI layer. Consequently, there has been a significant surge in research interest regarding the behavior of electrolyte solvation structures to elucidate improvements in battery performance. Thus, in this study, we aimed to explore the solvation structures of LiPF₆ in a mixture of organic solvents, tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (MTHF) using ab-initio molecular dynamics (AIMD) simulations. Our work investigated the solvation structure of electrolytes with different salt concentrations: low-concentration electrolyte (1.0M LiPF6 in 1:1v/v mixture of THF and MTHF), and high-concentration electrolyte (2.0M LiPF₆ in 1:1v/v mixture of THF and MTHF) and compared them with that of conventional electrolyte (1.0M LiPF₆ in 1:1v/v mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)). Furthermore, the reduction stability of Li+ solvation structures in these electrolyte systems are investigated. It is found that the first solvation shell of Li+ primary consists of THF. We also analyzed the molecular orbital energy levels to understand the reducing stability of these solvents. Compared with the solvation sheath of commercial electrolyte, the THF/MTHF-containing electrolytes have a higher lowest unoccupied molecular orbital (LUMO) energy level, resulting in improved reduction and interface stability. It has been shown that Li-Al alloy can significantly improve cycle life and promote the formation of a dense SEI layer. Therefore, this study aims to construct the solvation structures obtained from calculations of the pure electrolyte system on the surface of Al-Li alloy. Additionally, AIMD simulations will be conducted to investigate chemical reactions at the interface. This investigation aims to elucidate the composition of the SEI layer formed. Furthermore, Bader charges are used to determine the origin and flow of electrons, thereby revealing the sequence of reduction reactions for generating SEI layers.Keywords: lithium, aluminum, alloy, battery, solvation structure
Procedia PDF Downloads 225386 Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation
Authors: Yanin Hosakun, Sujitra Wongkasemjit, Thanyalak Chaisuwan
Abstract:
Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4.Keywords: bacterial cellulose, CO2, CH4 separation, membrane, nata de coco
Procedia PDF Downloads 2525385 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 3955384 Signature Bridge Design for the Port of Montreal
Authors: Juan Manuel Macia
Abstract:
The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability
Procedia PDF Downloads 705383 Equipment Design for Lunar Lander Landing-Impact Test
Authors: Xiaohuan Li, Wangmin Yi, Xinghui Wu
Abstract:
In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved.Keywords: landing-impact test, lunar lander, releasing device, test equipment
Procedia PDF Downloads 6225382 SOI-Multi-FinFET: Impact of Fins Number Multiplicity on Corner Effect
Authors: A.N. Moulay Khatir, A. Guen-Bouazza, B. Bouazza
Abstract:
SOI-Multifin-FET shows excellent transistor characteristics, ideal sub-threshold swing, low drain induced barrier lowering (DIBL) without pocket implantation and negligible body bias dependency. In this work, we analyzed this combination by a three-dimensional numerical device simulator to investigate the influence of fins number on corner effect by analyzing its electrical characteristics and potential distribution in the oxide and the silicon in the section perpendicular to the flow of the current for SOI-single-fin FET, three-fin and five-fin, and we provide a comparison with a Trigate SOI Multi-FinFET structure.Keywords: SOI, FinFET, corner effect, dual-gate, tri-gate, Multi-Fin FET
Procedia PDF Downloads 4755381 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin
Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh
Abstract:
Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon
Procedia PDF Downloads 1585380 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials
Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert
Abstract:
The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.Keywords: graphene, shape memory, smart materials, polymers, nanomaterials
Procedia PDF Downloads 845379 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 3675378 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements
Authors: Shagufta Tabassum
Abstract:
The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique
Procedia PDF Downloads 2065377 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 955376 Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2
Authors: Gülşah Çelik Gül, Figen Kurtuluş
Abstract:
Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).Keywords: cesium bismuth dimolybdate, microwave synthesis, powder x-ray diffraction, rare earth dimolybdates
Procedia PDF Downloads 5185375 Dense and Quality Urban Living: A Comparative Study on Architectural Solutions in the European City
Authors: Flavia Magliacani
Abstract:
The urbanization of the last decades and its resulting urban growth entail problems both for environmental and economic sustainability. From this perspective, sustainable settlement development requires a horizontal decrease in the existing urban structure in order to enhance its greater concentration. Hence, new stratifications of the city fabric and architectural strategies ensuring high-density settlement models are possible solutions. However, although increasing housing density is necessary, it is not sufficient. Guaranteeing the quality of living is, indeed, equally essential. In order to meet this objective, many other factors come to light, namely the relationship between private and public spaces, the proximity to services, the accessibility of public transport, the local lifestyle habits, and the social needs. Therefore, how to safeguard both quality and density in human habitats? The present paper attempts to answer the previous main research question by addressing several sub-questions: Which architectural types meet the dual need for urban density and housing quality? Which project criteria should be taken into consideration by good design practices? What principles are desirable for future planning? The research will analyse different architectural responses adopted in four European cities: Paris, Lion, Rotterdam, and Amsterdam. In particular, it will develop a qualitative and comparative study of two specific architectural solutions which integrate housing density and quality living. On the one hand, the so-called 'self-contained city' model, on the other hand, the French 'Habitat Dense Individualisé' one. The structure of the paper will be as follows: the first part will develop a qualitative evaluation of some case studies, emblematic examples of the two above said architectural models. The second part will focus on the comparison among the chosen case studies. Finally, some conclusions will be drawn. The methodological approach, therefore, combines qualitative and comparative research. Parameters will be defined in order to highlight potential and criticality of each model in light of an interdisciplinary view. In conclusion, the present paper aims at shading light on design approaches which ensure a right balance between density and quality of the urban living in contemporary European cities.Keywords: density, future design, housing quality, human habitat
Procedia PDF Downloads 1065374 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method
Authors: K. C. Gayithri, S. K. Naveen Kumar
Abstract:
ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction
Procedia PDF Downloads 3965373 Ductility Spectrum Method for the Design and Verification of Structures
Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour
Abstract:
This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.Keywords: seismic demand, capacity, inelastic spectra, design and structure
Procedia PDF Downloads 3965372 Expressivity of Word-Formation in English and Russian Advertising Lexicon
Authors: Voronina Ekaterina Borisovna
Abstract:
The problem of expressivity of advertising lexicon is studied in the article. The comparison of English and Russian advertising lexicons is done. The objects of the analysis were English and Russian advertising texts, both printed advertising texts and texts extracted from the commercials. Some conclusions concerning the expressivity of advertising lexicon were made. Expressivity can be included in the semantic structure of words or created by word-formation means. Expressivity caused by morphological derivatives includes such facilities as derivational affixes, models and types of word formation.Keywords: advertising lexicon, expressivity, word-formation means, linguistics
Procedia PDF Downloads 351