Search results for: sensor devices
1285 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift
Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard
Abstract:
Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.Keywords: floor lift, human robot interaction, admittance controller, variable admittance
Procedia PDF Downloads 1111284 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)
Authors: Osamede Asowata
Abstract:
The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.
Procedia PDF Downloads 2401283 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature
Authors: T. Nishido, S. Fukumoto
Abstract:
The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.Keywords: bridge bearing, concrete slab, FBG sensor, health monitoring
Procedia PDF Downloads 2211282 First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide
Authors: Karkour Selma
Abstract:
We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application.Keywords: DFT, spintronic, GGA, spinel
Procedia PDF Downloads 761281 Effect of Eddy Irrigant Activation on Cleanliness of the Root Canal Wall during Pulpectomy of Primary Teeth
Authors: Rasha Sharaf, Nehal Sharaf
Abstract:
Pulpectomy of primary teeth aims to remove the necrotic pulp tissue from the infected root canal and clean the root canal walls from any remnant of pulp tissue. Different irrigant activation systems have been recently used, and one of these devices is the Eddy which helps in removal of smear layer and improves the intimate contact between the filling material and the root canal wall. Aim: To evaluate the efficacy of Eddy in cleanliness of the root canal during pulpectomy of primary teeth. Materials and methods: 45 freshly extracted primary anterior teeth were divided into 3 equal groups, in the 1st group sodium hypochlorite only was used during pulpectomy, in the 2nd group irrigation using sodium hypochlorite with file agitation was performed and in the 3rd group sodium hypochlorite was used with Eddy for irrigant activation. All samples were sectioned longitudinally and scanned using scanning electron microscope to evaluate the cleanliness of the root canals. Results: It was found that Eddy showed high efficacy in removal of smear layer during pulpectomy of primary teeth.Keywords: Eddy, irrigant activation, irrigation, pulpectomy
Procedia PDF Downloads 1521280 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences
Authors: M. Pomianek, M. Piszczek, M. Maciejewski
Abstract:
The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.Keywords: eye tracking, fixation point, pupil size, virtual reality
Procedia PDF Downloads 1321279 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load
Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy
Abstract:
Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.Keywords: energy consumption schedule, load shifting, comparison, demand side mangement
Procedia PDF Downloads 1821278 Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm
Authors: V. V. Singh, Yusuf Ibrahim Gwanda, Rajesh Prasad
Abstract:
In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution.Keywords: reliability, availability Gumbel-Hougaard family copula, MTTF, internet data centre
Procedia PDF Downloads 5311277 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 801276 Collaborative Writing on Line with Apps During the Time of Pandemic: A Systematic Literature Review
Authors: Giuseppe Liverano
Abstract:
Today’s school iscalledupon to take the lead role in supporting students towards the formation of conscious identity and a sense of responsible citizenship, through the development of key competencies for lifelong learning A rolethatrequiresit to be ready for change and to respond to the ever new needs of students, by adopting new pedagogical and didactic models and new didactic devices. Information and Communication Technologies, in this sense, reveal themselves to be usefulresourcesthatpermit to focus attention on the learning of eachindividualstudentunderstoodas a dynamic and relational process of constructing shared and participatedmeanings. The use of collaborative writing apps represents a democratic and shared knowledge way of constructionthroughICTs. It promotes the learning of reading-writing, literacy, and the development of transversal competencies in an inclusive perspective peer-to-peer comparison and reflectionthatstimulates the transfer of thought into speech and writing, the transformation of knowledge through a trialogicalapproach to learning generates enthusiasm and strengthensmotivationItrepresents a “different” way of expressing the training needs which come from several disciplinary fields of subjects with different cultures. The contribution aims to reflect on the formative value of collaborative writing through apps and analyse some proposals on line at school during the time of pandemic in order to highlight their critical aspects and pedagogical perspectives.Keywords: collaborative writing, formative value, online, apps, pandemic
Procedia PDF Downloads 1571275 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 4081274 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 1421273 Improved Structure and Performance by Shape Change of Foam Monitor
Authors: Tae Gwan Kim, Hyun Kyu Cho, Young Hoon Lee, Young Chul Park
Abstract:
Foam monitors are devices that are installed on cargo tank decks to suppress cargo area fires in oil tankers or hazardous chemical ship cargo ships. In general, the main design parameter of the foam monitor is the distance of the projection through the foam monitor. In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. Numerical techniques for fluid analysis of foam monitors have been developed for prediction. The flow pattern of the fluid varies depending on the shape of the flow path of the foam monitor, as the flow losses affecting projection distance were calculated through numerical analysis. The basic shape of the foam monitor was an L shape designed by N Company. The modified model increased the length of the flow path and used the S shape model. The calculation result shows that the L shape, which is the basic shape, has a problem that the force is directed to one side and the vibration and noise are generated there. In order to solve the problem, S-shaped model, which is a change model, was used. As a result, the problem is solved, and the projection distance from the nozzle is improved.Keywords: CFD, foam monitor, projection distance, moment
Procedia PDF Downloads 3431272 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots
Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang
Abstract:
Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle
Procedia PDF Downloads 801271 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics
Authors: Ramovatar, Neeraj Panwar
Abstract:
Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics
Procedia PDF Downloads 1521270 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter
Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed
Abstract:
Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control
Procedia PDF Downloads 7391269 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin
Abstract:
There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.Keywords: cloud computing, energy utilization, power consumption, resource allocation
Procedia PDF Downloads 3391268 Effects of Plasma Treatment on Seed Germination
Authors: Yong Ho Jeon, Youn Mi Lee, Yong Yoon Lee
Abstract:
Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application.Keywords: cold plasma, cucumber, germination, SEM
Procedia PDF Downloads 3161267 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 1861266 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid
Authors: S. Al-Enezi, J. Samuel, A. Al-Banna
Abstract:
Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.Keywords: PVDF, polymer membrane, gas permeability, CO₂ separation, nanotubes
Procedia PDF Downloads 2851265 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment
Authors: Jerry John T. M., Sylas V. P., Shijo Joy
Abstract:
Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study
Procedia PDF Downloads 661264 A Daily Diary Study on Technology-Assisted Supplemental Work, Psychological Detachment, and Well-Being – The Mediating Role of Cognitive Coping
Authors: Clara Eichberger, Daantje Derks, Hannes Zacher
Abstract:
Technology-assisted supplemental work (TASW) involves performing job-related tasks after regular working hours with the help of technological devices. Due to emerging information and communication technologies, such behavior becomes increasingly common. Since previous research on the relationship of TASW, psychological detachment and well-being are mixed, this study aimed to examine the moderating roles of appraisal and cognitive coping. A moderated mediation model was tested with daily diary data from 100 employees. As hypothesized, TASW was positively related to negative affect at bedtime. In addition, psychological detachment mediated this relationship. Results did not confirm appraisal and cognitive coping as moderators. However, additional analyses revealed cognitive coping as a mediator of the positive relationship of TASW and positive affect at bedtime. These results suggest that, on the one hand engaging in TASW can be harmful to employee well-being (i.e., more negative affect) and on the other hand, it can also be associated with higher well-being (i.e., more positive affect) in case it is accompanied by cognitive coping.Keywords: cognitive coping, psychological detachment, technology-assisted supplemental work, well-being
Procedia PDF Downloads 1931263 The Methodology of Hand-Gesture Based Form Design in Digital Modeling
Authors: Sanghoon Shim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition.Keywords: design environment, digital modeling, hand gesture, TUI, virtual reality
Procedia PDF Downloads 3661262 ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation
Authors: John Segars
Abstract:
Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house.Keywords: ESRI, GIS, infrastructure, network documentation, PostgreSQL
Procedia PDF Downloads 1811261 Study of Hydrocarbons Metering Issues in Algerian Fields under the New Law Context
Authors: A. Hadjadj, S. Maamir
Abstract:
Since the advent of the law 86/14 concerning theexploitation of the national territory by foreign companies in
partnership with the Algerian oil and gas company, the problem of
hydrocarbons metering in the sharing production come out.
More generally, good management counting hydrocarbons can
provide data on the production wells, the field and the reservoir for
medium and long term planning, particularly in the context of the
management and field development.
In this work, we are interested in the transactional metering which
is a very delicate and crucial period in the current context of the new
hydrocarbon’s law characterized by assets system between the
various activities of Sonatrach and its foreign partners.
After a state of the art on hydrocarbons metering devices in
Algeria and elsewhere, we will decline the advantages and
disadvantages of each system, and then we describe the problem to
try to reach an optimal solution.
Keywords: transactional metering, flowmeter orifice, heat flow, Sonatrach
Procedia PDF Downloads 3621260 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles
Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy
Abstract:
This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot
Procedia PDF Downloads 6051259 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes
Authors: Ritwik Dutta, Marylin Wolf
Abstract:
This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver
Procedia PDF Downloads 3901258 Packet Fragmentation Caused by Encryption and Using It as a Security Method
Authors: Said Rabah Azzam, Andrew Graham
Abstract:
Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch.Keywords: fragmentation, encryption, security, switch
Procedia PDF Downloads 3361257 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study
Authors: M. A. Lawal, A. Uzairu, M. S. Sallau
Abstract:
The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard
Procedia PDF Downloads 3711256 Streptavidin-Biotin Attachment on Modified Silicon Nanowires
Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh
Abstract:
Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS
Procedia PDF Downloads 418