Search results for: sampling algorithms
2590 Identifying the Goals of a Multicultural Curriculum for the Primary Education Course
Authors: Fatemeh Havas Beigi
Abstract:
The purpose of this study is to identify the objectives of a multicultural curriculum for the primary education period from the perspective of ethnic teachers and education experts and cultural professionals. The research paradigm is interpretive, the research approach is qualitative, the research strategy is content analysis, the sampling method is purposeful and it is a snowball, and the sample of informants in the research for Iranian ethnic teachers and experts until the theoretical saturation was estimated to be 67 people. The data collection tools used were based on semi-structured interviews and individual interviews and focal interviews were used to collect information. The data format was also in audio format and the first period coding and the second coding were used to analyze the data. Based on data analysis 11 Objective: Paying attention to ethnic equality, expanding educational opportunities and justice, peaceful coexistence, anti-ethnic and racial discrimination education, paying attention to human value and dignity, accepting religious diversity, getting to know ethnicities and cultures, promoting teaching-learning, fostering self-confidence, building national unity, and developing cultural commonalities for a multicultural curriculum were identified.Keywords: objective, multicultural curriculum, connect, elementary education period
Procedia PDF Downloads 962589 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1132588 NO2 Exposure Effect on the Occurrence of Pulmonary Dysfunction the Police Traffic in Jakarta
Authors: Bambang Wispriyono, Satria Pratama, Haryoto Kusnoputranto, Faisal Yunus, Meliana Sari
Abstract:
Introduction/objective: The impact of the development of motor vehicles is increasing the number of pollutants in the air. One of the substances that cause serious health problems is NO2. The health impacts arising from exposure to NO2 include pulmonary function impairment. The purpose of this study was to determine the relationship of NO2 exposure on the incidence of pulmonary function impairment. Methods: We are using a cross-sectional study design with 110 traffic police who were divided into two groups: exposed (police officers working on the highway) and the unexposed group (police officers working in the office). Election subject convenient sampling carried out in each group to the minimum number of samples met. Results: The results showed that the average NO2 in the exposed group was 18.72 ppb and unexposed group is 4.14 ppb. Pulmonary dysfunction on exposed and unexposed groups showed that FVC (Forced Vital Capacity) value are 88.68 and 90.27. And FEV1 (Forced Expiratory Volume in One) value are 94.9 and 95.16. Some variables like waist circumference, Body Mass Index, Visceral Fat, and Fat has associated with the incidence of Pulmonary Dysfunction (p < 0.05). Conclusion: Health monitoring is needed to decreasing health risk in Policeman.Keywords: NO2, pulmonary dysfunction, police traffic, Jakarta
Procedia PDF Downloads 2592587 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1132586 Residents’ Awareness of Green Infrastructure Types in the Neighbourhood: Panacea for Biodiversity Conservation
Authors: Adedotun Ayodele Dipeolu, Olusegun Ayotunde Oriola
Abstract:
Rapid urban growth has led to the loss of contact with nature for most urban residents. While Green Infrastructure (GI) is promoted as a strategy to manage ecosystems’ functionality, the extent to which residents are aware of GI types which serve as alternatives to conventional landscapes to be conserved remains unclear. This paper examines the awareness level of GI types among residents of Lagos Metropolis, Nigeria and the association of their demographic characteristics with the level of awareness. Multi-stage sampling technique was used to select 1560 residents who completed semi-structured questionnaires. Descriptive statistics were used to explore data distributions while t-test assessed the differences in the awareness level of the male and female participants. From the 23 different types of GI facilities identified in the study area, residents reported a high level of awareness on just five of them. These include green gardens, green parks, grasses, street trees, and sports fields but a low level of awareness of the remaining 18 GI types. Awareness of GI types is presently low in the study area. Increased awareness will encourage care and protection of green infrastructure by residents which will consequently enhance availability and conservation of more biodiversity in Lagos, Nigeria, and other nations.Keywords: awareness, biodiversity conservation, environmental sustainability, green infrastructure, urban centres
Procedia PDF Downloads 2202585 The Relationship between Body Esteem and Self-Esteem with Sport-Confidence Students
Authors: Saeid Motevalli, Siti Fatimah Azzahrah Binti Abd Mutalib, Mohd Sahandri Ghani Hamzah, Hazalizah Hamzah
Abstract:
The main purpose of the present study was to investigate the relationship between body esteem and self-esteem with sport-confidence among university students. This study was conducted by using the descriptive and correlational study design. Meanwhile, the method involved in this study was the online survey method. The population of the sample are mainly Universiti Pendidikan Sultan Idris (UPSI) students only which 120 participants were selected by cluster sampling method from two faculties named Fakulti Pembangunan Manusia (FPM) and Fakulti Sains Sukan dan Kejurulatihan (FSSKJ). The instrument used in this study was The Body-Esteem Scale (BES) by Franzoi and Shields (1984), Rosenberg Self-Esteem Scale (RSES) by Rosenberg (1965) and the Vealey’s Trait Sport-Confidence Inventory (TSCI) by (Vealey, 1986). The results of the Pearson product-moment correlation coefficient showed that there was a positive and moderate correlation between students’ body-esteem and sport-confidence and a negative and low correlation between students’ self-esteem and sport-confidence. Likewise, based on the entry method used all two predictor variables were significant in explaining sport confidence among UPSI students. In conclusion, it can be said that students’ sport-confidence affected by students’ self-esteem and body-esteem.Keywords: body esteem, self-esteem, sport-confidence, students
Procedia PDF Downloads 1502584 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation
Authors: Fatai Shola Afolabi
Abstract:
The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss
Procedia PDF Downloads 2632583 Prevalence of Headache among Adult Population in Urban Varanasi, India
Authors: Hari Shankar, Kshitij Raj, Priya Keshari, Pragya Singh
Abstract:
Headache is one of the most ubiquitous and frequent neurological disorders interfering with everyday life in all countries. India appears to be no exception. Objectives are to assess the prevalence of headache among adult population in urban area of Varanasi and to find out factors influencing the occurrence of headache. A community based cross sectional study was conducted among adult population in urban area of Varanasi district, Uttar Pradesh, India. Total 151 eligible respondents were interviewed by simple random sampling technique. Proportion percentage and Chisquare test were applied for data analysis. Out of 151 respondents, majority (58.3%) were females. In this study, 92.8% respondents belonged to age group 18-60 years while 7.2% was either 60 year of age or above. The overall prevalence of headache was found to be 51.1%. Highest and lowest prevalence of headache was recorded in age groups 18-29 year & 40-49 year respectively. Headache was 62.1% in illiterate and was 40.0% among graduate & above. Unskilled workers had more headache 73.1% than other type of occupation. Headache was more prevalent among unemployed (35.9%) than employed (6.4%). Females had higher family history of headache (48.9%) as compared to males (41.3%). Study subjects having peaceful relation with family members, relatives and neighbors had more headache than those having no peaceful relation.Keywords: family relationship, headache, neighbors, ration cards
Procedia PDF Downloads 4912582 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 4262581 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index
Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi
Abstract:
The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.Keywords: water quality index, groundwater, chloride, GIS, Garmsar
Procedia PDF Downloads 1062580 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 4002579 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 2272578 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging
Procedia PDF Downloads 3782577 Implementation of the Science Curriculum of the Colleges of Education: Successes and Challenges
Authors: Cecilia Boakye, Joseph Ghartey Ampiah
Abstract:
In this study, we present a case study in which we explored how the 2007 science curriculum of the colleges of education in Ghana was implemented at W College of Education. Purposive sampling was used to select 13 participants, comprising 2 tutors and 6 teacher trainees from W College of Education and, 5 newly qualified Junior High School (JHS) science teachers who were products of W College. Interviews, observations and content analysis were used to collect data. Using the deductive and inductive analytic approaches, the findings showed that although upgraded laboratories have provided for teaching authentic science at W College of Education, they are rather used to accommodate large classes at the expense of practical activities. The teaching and learning methods used by the tutors do not mirror effectively the objectives of the 2007 science curriculum of the colleges of education. There are challenges such as: (a) lack/inadequate equipment and materials, (b) time constraint, and (c) an examination- oriented curriculum that influence the implementation of the curriculum. Some of the suggestions that were made are that: (a) equipment and materials should be supplied to the colleges to facilitate the proper implementation of the curriculum, and (b) class sizes should be reduced to provide enough room for practical activities.Keywords: class size, teaching, curriculum implementation, examination-oriented curriculum, teaching and time-constraint
Procedia PDF Downloads 2752576 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method
Authors: Marek Dlapa
Abstract:
The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value
Procedia PDF Downloads 1422575 Bacterial Contamination of Kitchen Sponges and Cutting Surfaces and Disinfection Procedures
Authors: Hayyan I Al Taweil
Abstract:
Background: The most common of bacterium in kitchen sponges and cutting surfaces which can play a task within the cross-contamination of foods, fomites and hands by foodborne pathogens. Aims and Objectives: This study investigated the incidence of bacterium in kitchen Sponge, and cutting surfaces. Material and methods: a complete of twenty four kitchen Sponges were collected from home kitchens and therefore the numbers of mesotrophic microorganism, coliform microorganism, E. coli, Salmonella, genus {pseudomonas|bacteria genus} and staphylococci in every kitchen Sponges were determined. Microbiological tests of all sponges for total mesophilic aerobic microorganism, S. aureus, Pseudomonas, Salmonella spp., and E. coli were performed on days 3, 7, and 14 by sampling. The sponges involved in daily use in kitchens countenosely with the dishwasher detergent a minimum of doubly daily Results: Results from the overall mesophilic aerobic microorganism, indicate a major increase within the variety of log CFU/ml. the amount of E. coli was reduced, Salmonella spp. was stabled, S. aureus was enhanced from the sponges throughout fourteen days. Genus Pseudomonas was enhanced and was the dominant micro flora within the sponges throughout fourteen days.Keywords: Kitchen Sponges, Microbiological Contamination, Disinfection; cutting surface; , Cross-Contamination
Procedia PDF Downloads 1462574 Psychiatric Symptoms in Keratoconus: Analyzing Anxiety and Depression in Affected Patients
Authors: Nida Amin, Fahad Tanveer, Hina Shabbir, Ayesha Saeed, Attiqa Riaz
Abstract:
The gradual progression of corneal disorder keratoconus significantly impairs eyesight and quality of life, increasing the likelihood of depression. Using the Hospital Anxiety and Depression Scale (HADS) at the AL-Ibrahim Eye Hospital in Karachi, this study aimed to evaluate the occurrence of depression and anxiety symptoms in patients with keratoconus and to suggest better treatment. A descriptive-analytical study was conducted at Al-Ibrahim Eye Hospital Karachi from March to April 2022, and patients diagnosed with symptomatic keratoconus were recruited using a non-probability convenient sampling technique. After obtaining written informed consent from patients, keratoconus severity was assessed using visual acuity and corneal topography. Symptoms of anxiety and depression were assessed using the Hospital Anxiety and Depression (HADS) Scale. The data were analyzed using SPSS version 20.0. Spearman correlation coefficient. Of the 108 participants, 60 (56%) were female and 48 (44%) were male. Using the HADS scale, 44 (40.7%) patients were classified as normal with a HADS score of (0-7), 23 (21.3%) as borderline with a HADS score of (8-10) and 41 (38%) patients were diagnosed with anxiety and depression with a HADS score of (11-21). Depression and anxiety are highly prevalent among patients in advanced stages of the disease.Keywords: cornea, keratoconus, anxiety, depression, corneal topography, mental health
Procedia PDF Downloads 382573 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 3562572 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 1332571 The Effectiveness of Group Counseling of Mindfulness-Based Cognitive Therapy on Cognitive Emotion Regulation in High School Students
Authors: Hossein Ilanloo, Sedigheh Ahmadi, Kianoosh Zahrakar
Abstract:
The present study aims at investigating the effectiveness of group counseling of mindfulness-based cognitive therapy on cognitive emotion regulation in high school students. The research design was quasi-experimental and pre-test-post-test type and a two-month follow-up with a control group. The statistical population of the study consisted of all-male high school students in Takestan city in the Academic Year 2020-2021. The sample comprised 30 high school male students selected through the convenience sampling method and randomly assigned to experimental (n=15) and control (n=15) groups. The experimental group then received ten sessions of 90-minute group counseling of mindfulness-based cognitive therapy, and the control group did not receive any intervention. In order to collect data, the author used the Cognitive Emotion Regulation Questionnaire (CERQ). The researcher also used multivariate analysis of covariance, repeated measures, LSD post hoc test, and SPSS-26 software for data analysis.Keywords: mindfulness-based cognitive therapy, cognitive emotion regulation, students, high schools
Procedia PDF Downloads 1262570 Factors Influencing Prevalence of HIV/AIDS Among Men Who Have Sex With men (MSM) Aged 18-24 years in Mtwapa Town, Kilifi County, Kenya
Authors: Oscar Maina Irungu
Abstract:
Background: Men who have sex with men (MSM) in Mtwapa Town, Kilifi County are at high risk of HIV infection. Probability sample surveys to determine HIV prevalence among MSM in Mtwapa are needed to inform prevention and care services. Methods: In 2013, a cross-sectional survey was conducted among MSM aged 18-24 years old, using respondent-driven sampling (RDS) in Mtwapa. Consenting MSM were tested for HIV (fingerstick rapid test). Population-based prevalence and 95 % confidence intervals (CI) were estimated using RDS Analysis Tool (RDSAT). Results: Among 274 MSM, the median age was 20 years (IQR: 19-23 years). Fifty percent of MSM reported not selling sex, while 13.2 % reported sex work as their “main occupation”, and another 28.4 % reported selling sex in the past two months (but not as their main occupation).Overall HIV prevalence was 19.2 % (CI: 12.2-23.6%). HIV prevalence was higher among MSM who reported sex work as their main occupation (28.3%,CI: 12.1-42.3%) or selling sex in the past two months (26.6 %, CI: 17.2-35.7 %),than among MSM who did not sell sex (11.6%,CI: 7.0-18.1%). Conclusion: HIV prevalence among MSM were high than among Kilifi’s general population aged 15-64 years (8.8%; 2010 KAIS) and highest in male sex workers. Health programs need to address concerns and modify services to meet needs of diverse subgroups of MSM. We recommend continued, periodic surveillance to monitor HIV prevalence among MSM in Mtwapa, and expansion to other areas in Kenya.Keywords: power point, Kenya, homosexuality, sex
Procedia PDF Downloads 3832569 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology
Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar
Abstract:
The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology
Procedia PDF Downloads 1162568 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 3752567 Mathematics Anxiety and Attitude among Nigerian University Library and Information Science Undergraduate Students
Authors: Fredrick Olatunji Ajegbomogun, Clement Ola Adekoya
Abstract:
Mathematics has, for ages, been an essential subject in the education curriculum across the globe. The word mathematics scares the majority of undergraduate students and even more library and information science (LIS) students who have not seen the pertinence of the subject to their academic pursuits. This study investigated mathematics anxiety and attitudes among LIS undergraduate students in Nigerian universities. The study adopted a descriptive survey research design. Multi-stage and convenient sampling techniques were used for the study. Data were collected using a questionnaire and analyzed using descriptive statistical tools. It was found that mathematics is important in LIS education. The students displayed a high level of anxiety toward mathematics. The students have a negative attitude toward mathematics. However, the hypotheses tested revealed that while the LIS female undergraduate students displayed low levels of anxiety and a positive attitude toward mathematics, the level of anxiety of the male undergraduate students was high, and their attitude toward mathematics was negative. It was recommended that LIS undergraduate students develop a positive attitude towards mathematics and appreciate that the paradigm shift in the practice of librarianship is towards mathematics as a way of developing technological tools (hardware and software) to facilitate the effective delivery of library services.Keywords: anxiety, attitude, library and information science, mathematics anxiety, undergraduate students, Nigerian universities
Procedia PDF Downloads 1582566 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1302565 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 1292564 The Use of Voice in Online Public Access Catalog as Faster Searching Device
Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu
Abstract:
Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.Keywords: OPAC, voice, searching, faster
Procedia PDF Downloads 3472563 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch
Procedia PDF Downloads 1172562 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance
Authors: Qura-tul-aain Khair
Abstract:
Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance
Procedia PDF Downloads 3842561 Assessment of Educational Service Quality at Master's Level in an Iranian University Using Based on HEdPERF Model
Authors: Faranak Omidian
Abstract:
The aim of this research was to examine the quality of education service at master's level in the Islamic Azad University of Dezful. In terms of objective, this is an applied research and in regard to methodology, it is a descriptive analytical research. The statistical population included all students of master's degree in the Islamic Azad University of Dezful. The sample size was determined using stratified random sampling method in different fields of study. The research questionnaire is the translated version of standardized Abdullah's HEdPERF 41-item scale which is based on a 5-point Likert scale. In order to determine the validity, the translated questionnaire was given to the professors of educational sciences. The correlation among all questions has been regarded at a value of 0.644. The results showed that the quality of educational service at master's level in this university, based on chi-square goodness of fit test, was equal to 73.36 and its degree of freedom was 2 at a significant level of 0.001, indicating the low desirability of the services. According to Friedman test, academic responsiveness has been reported to be in a higher status than other dimensions with an average rank of 3.94 while accessibility, with an average rank of 2.15, has been in the lowest status from master's students' viewpoint.Keywords: educational service quality, master's level, Iranian university
Procedia PDF Downloads 280