Search results for: robust penalized regression
2214 Sea Level Rise and Sediment Supply Explain Large-Scale Patterns of Saltmarsh Expansion and Erosion
Authors: Cai J. T. Ladd, Mollie F. Duggan-Edwards, Tjeerd J. Bouma, Jordi F. Pages, Martin W. Skov
Abstract:
Salt marshes are valued for their role in coastal flood protection, carbon storage, and for supporting biodiverse ecosystems. As a biogeomorphic landscape, marshes evolve through the complex interactions between sea level rise, sediment supply and wave/current forcing, as well as and socio-economic factors. Climate change and direct human modification could lead to a global decline marsh extent if left unchecked. Whilst the processes of saltmarsh erosion and expansion are well understood, empirical evidence on the key drivers of long-term lateral marsh dynamics is lacking. In a GIS, saltmarsh areal extent in 25 estuaries across Great Britain was calculated from historical maps and aerial photographs, at intervals of approximately 30 years between 1846 and 2016. Data on the key perceived drivers of lateral marsh change (namely sea level rise rates, suspended sediment concentration, bedload sediment flux rates, and frequency of both river flood and storm events) were collated from national monitoring centres. Continuous datasets did not extend beyond 1970, therefore predictor variables that best explained rate change of marsh extent between 1970 and 2016 was calculated using a Partial Least Squares Regression model. Information about the spread of Spartina anglica (an invasive marsh plant responsible for marsh expansion around the globe) and coastal engineering works that may have impacted on marsh extent, were also recorded from historical documents and their impacts assessed on long-term, large-scale marsh extent change. Results showed that salt marshes in the northern regions of Great Britain expanded an average of 2.0 ha/yr, whilst marshes in the south eroded an average of -5.3 ha/yr. Spartina invasion and coastal engineering works could not explain these trends since a trend of either expansion or erosion preceded these events. Results from the Partial Least Squares Regression model indicated that the rate of relative sea level rise (RSLR) and availability of suspended sediment concentration (SSC) best explained the patterns of marsh change. RSLR increased from 1.6 to 2.8 mm/yr, as SSC decreased from 404.2 to 78.56 mg/l along the north-to-south gradient of Great Britain, resulting in the shift from marsh expansion to erosion. Regional differences in RSLR and SSC are due to isostatic rebound since deglaciation, and tidal amplitudes respectively. Marshes exposed to low RSLR and high SSC likely leads to sediment accumulation at the coast suitable for colonisation by marsh plants and thus lateral expansion. In contrast, high RSLR with are likely not offset deposition under low SSC, thus average water depth at the marsh edge increases, allowing larger wind-waves to trigger marsh erosion. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes to RSLR. Monitoring and managing suspended sediment supply is not common-place, but may be critical to mitigating coastal impacts from climate change.Keywords: lateral saltmarsh dynamics, sea level rise, sediment supply, wave forcing
Procedia PDF Downloads 1342213 RNAseq Reveals Hypervirulence-Specific Host Responses to M. tuberculosis Infection
Authors: Gina Leisching, Ray-Dean Pietersen, Carel Van Heerden, Paul Van Helden, Ian Wiid, Bienyameen Baker
Abstract:
The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with two genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow-derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these two transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed two early-response genes (IER3 and SAA3) and two host-defence genes (OASL1 and SLPI) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role under infection with virulent M.tb is required.Keywords: host-response, Mycobacterium tuberculosis, RNAseq, virulence
Procedia PDF Downloads 2102212 Unlocking the Genetic Code: Exploring the Potential of DNA Barcoding for Biodiversity Assessment
Authors: Mohammed Ahmed Ahmed Odah
Abstract:
DNA barcoding is a crucial method for assessing and monitoring species diversity amidst escalating threats to global biodiversity. The author explores DNA barcoding's potential as a robust and reliable tool for biodiversity assessment. It begins with a comprehensive review of existing literature, delving into the theoretical foundations, methodologies and applications of DNA barcoding. The suitability of various DNA regions, like the COI gene, as universal barcodes is extensively investigated. Additionally, the advantages and limitations of different DNA sequencing technologies and bioinformatics tools are evaluated within the context of DNA barcoding. To evaluate the efficacy of DNA barcoding, diverse ecosystems, including terrestrial, freshwater and marine habitats, are sampled. Extracted DNA from collected specimens undergoes amplification and sequencing of the target barcode region. Comparison of the obtained DNA sequences with reference databases allows for the identification and classification of the sampled organisms. Findings demonstrate that DNA barcoding accurately identifies species, even in cases where morphological identification proves challenging. Moreover, it sheds light on cryptic and endangered species, aiding conservation efforts. The author also investigates patterns of genetic diversity and evolutionary relationships among different taxa through the analysis of genetic data. This research contributes to the growing knowledge of DNA barcoding and its applicability for biodiversity assessment. The advantages of this approach, such as speed, accuracy and cost-effectiveness, are highlighted, along with areas for improvement. By unlocking the genetic code, DNA barcoding enhances our understanding of biodiversity, supports conservation initiatives and informs evidence-based decision-making for the sustainable management of ecosystems.Keywords: DNA barcoding, biodiversity assessment, genetic code, species identification, taxonomic resolution, next-generation sequencing
Procedia PDF Downloads 252211 The Diffusion of Telehealth: System-Level Conditions for Successful Adoption
Authors: Danika Tynes
Abstract:
Telehealth is a promising advancement in health care, though there are certain conditions under which telehealth has a greater chance of success. This research sought to further the understanding of what conditions compel the success of telehealth adoption at the systems level applying Diffusion of Innovations (DoI) theory (Rogers, 1962). System-level indicators were selected to represent four components of DoI theory (relative advantage, compatibility, complexity, and observability) and regressed on 5 types of telehealth (teleradiology, teledermatology, telepathology, telepsychology, and remote monitoring) using multiple logistic regression. The analyses supported relative advantage and compatibility as the strongest influencers of telehealth adoption, remote monitoring in particular. These findings help to quantitatively clarify the factors influencing the adoption of innovation and advance the ability to make recommendations on the viability of state telehealth adoption. In addition, results indicate when DoI theory is most applicable to the understanding of telehealth diffusion. Ultimately, this research may contribute to more focused allocation of scarce health care resources through consideration of existing state conditions available foster innovation.Keywords: adoption, diffusion of innovation theory, remote monitoring, system-level indicators
Procedia PDF Downloads 1362210 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 1462209 Using Data-Driven Model on Online Customer Journey
Authors: Ing-Jen Hung, Tzu-Chien Wang
Abstract:
Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.Keywords: LSTM, customer journey, marketing, channel ads
Procedia PDF Downloads 1212208 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes
Authors: Anju Joshi, C. N. Tharamani
Abstract:
Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic
Procedia PDF Downloads 2362207 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images
Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek
Abstract:
Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection
Procedia PDF Downloads 3302206 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City
Authors: Jasper C. Dioco
Abstract:
The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers
Procedia PDF Downloads 1922205 Uncertainty and Volatility in Middle East and North Africa Stock Market during the Arab Spring
Authors: Ameen Alshugaa, Abul Mansur Masih
Abstract:
This paper sheds light on the economic impacts of political uncertainty caused by the civil uprisings that swept the Arab World and have been collectively known as the Arab Spring. Measuring documented effects of political uncertainty on regional stock market indices, we examine the impact of the Arab Spring on the volatility of stock markets in eight countries in the Middle East and North Africa (MENA) region: Egypt, Lebanon, Jordon, United Arab Emirate, Qatar, Bahrain, Oman and Kuwait. This analysis also permits testing the existence of financial contagion among equity markets in the MENA region during the Arab Spring. To capture the time-varying and multi-horizon nature of the evidence of volatility and contagion in the eight MENA stock markets, we apply two robust methodologies on consecutive data from November 2008 to March 2014: MGARCH-DCC, Continuous Wavelet Transforms (CWT). Our results indicate two key findings. First, the discrepancies between volatile stock markets of countries directly impacted by the Arab Spring and countries that were not directly impacted indicate that international investors may still enjoy portfolio diversification and investment in MENA markets. Second, the lack of financial contagion during the Arab Spring suggests that there is little evidence of cointegration among MENA markets. Providing a general analysis of the economic situation and the investment climate in the MENA region during and after the Arab Spring, this study bear significant importance for policy makers, local and international investors, and market regulators.Keywords: Portfolio Diversification , MENA Region , Stock Market Indices, MGARCH-DCC, Wavelet Analysis, CWT
Procedia PDF Downloads 2922204 Determinants of Financial Performance of South African Businesses in Africa: Evidence from JSE Listed Telecommunications Companies
Authors: Nomakhosi Tshuma, Carley Chetty
Abstract:
This study employed panel regression analysis to investigate the financial performance determinants of MTN and Vodacom’s rest of Africa businesses between 2012 to 2020. It used net profit margin, return on assets (ROA), and return on equity (ROE) as financial performance proxies. Financial performance determinants investigated were asset size, debt ratio, liquidity, number of subscribers, and exchange rate. Data relating to exchange rates were obtained from the World Bank website, while financial data and subscriber information were obtained from the companies’ audited financial statements. The study found statistically significant negative relationships between debt and both ROA and net profit, exchange rate and both ROA and net profit, and subscribers and ROE. It also found significant positive relationships between ROE and both asset size and exchange rate. The study recommends strategic options that optimise on the above findings, and these include infrastructure sharing to reduce infrastructure costs and the minimisation of foreign-denominated debt.Keywords: financial performance, determinants of financial performance, business in Africa, telecommunications industry
Procedia PDF Downloads 1002203 Perceived Social Support, Resilience and Relapse Risk in Recovered Addicts
Authors: Islah Ud Din, Amna Bibi
Abstract:
The current study was carried out to examine the perceived social support, resilience and relapse risk in recovered addicts. A purposive sampling technique was used to collect data from recovered addicts. A multidimensional scale of perceived social support by was used to measure the perceived social support. The brief Resilience Scale (BRS) was used to assess resilience. The Stimulant Relapse Risk Scale (SRRS) was used to examine the relapse risk. Resilience and Perceived social support have substantial positive correlations, whereas relapse risk and perceived social support have significant negative associations. Relapse risk and resilience have a strong inverse connection. Regression analysis was used to check the mediating effect of resilience between perceived social support and relapse risk. The findings revealed that perceived social support negatively predicted relapse risk. Results showed that Resilience plays a role as partial mediation between perceived social support and relapse risk. This Research will allow us to explore and understand the relapse risk factor and the role of perceived social support and resilience in recovered addicts. The study's findings have immediate consequences in the prevention of relapse. The study will play a significant part in drug rehabilitation centers, clinical settings and further research.Keywords: perceived social support, resilience, relapse risk, recovered addicts, drugs addiction
Procedia PDF Downloads 352202 Mindfulness and Mental Resilience Training for Pilots: Enhancing Cognitive Performance and Stress Management
Authors: Nargiza Nuralieva
Abstract:
The study delves into assessing the influence of mindfulness and mental resilience training on the cognitive performance and stress management of pilots. Employing a meticulous literature search across databases such as Medline and Google Scholar, the study used specific keywords to target a wide array of studies. Inclusion criteria were stringent, focusing on peer-reviewed studies in English that utilized designs like randomized controlled trials, with a specific interest in interventions related to mindfulness or mental resilience training for pilots and measured outcomes pertaining to cognitive performance and stress management. The initial literature search identified a pool of 123 articles, with subsequent screening resulting in the exclusion of 77 based on title and abstract. The remaining 54 articles underwent a more rigorous full-text screening, leading to the exclusion of 41. Additionally, five studies were selected from the World Health Organization's clinical trials database. A total of 11 articles from meta-analyses were retained for examination, underscoring the study's dedication to a meticulous and robust inclusion process. The interventions varied widely, incorporating mixed approaches, Cognitive behavioral Therapy (CBT)-based, and mindfulness-based techniques. The analysis uncovered positive effects across these interventions. Specifically, mixed interventions demonstrated a Standardized Mean Difference (SMD) of 0.54, CBT-based interventions showed an SMD of 0.29, and mindfulness-based interventions exhibited an SMD of 0.43. Long-term effects at a 6-month follow-up suggested sustained impacts for both mindfulness-based (SMD: 0.63) and CBT-based interventions (SMD: 0.73), albeit with notable heterogeneity.Keywords: mindfulness, mental resilience, pilots, cognitive performance, stress management
Procedia PDF Downloads 552201 The Life-Cycle Theory of Dividends: Evidence from Indonesia
Authors: Vashti Carissa
Abstract:
The main objective of this study is to examine whether the life-cycle theory of dividends could explain the determinant of an optimal dividend policy in Indonesia. The sample that was used consists of 1,420 non-financial and non-trade, services, investment firms listed in Indonesian Stock Exchange during the period of 2005-2014. According to this finding using logistic regression, firm life-cycle measured by retained earnings as a proportion of total equity (RETE) significantly has a positive effect on the propensity of a firm pays dividend. The higher company’s earned surplus portion in its capital structure could reflect firm maturity level which will increase the likelihood of dividend payment in mature firms. This result provides an additional empirical evidence about the existence of life-cycle theory of dividends for dividend payout phenomenon in Indonesia. It can be known that dividends tend to be paid by mature firms while retention is more dominating in growth firms. From the testing results, it can also be known that majority of sample firms are being in the growth phase which proves the fact about infrequent dividend distribution in Indonesia during the ten years observation period.Keywords: dividend, dividend policy, life-cycle theory of dividends, mix of earned and contributed capital
Procedia PDF Downloads 2902200 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)
Authors: Rizwan Fazal
Abstract:
This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.Keywords: financial integration, trade integration, net foreign assets, gross domestic product
Procedia PDF Downloads 2722199 Investigation of Optimized Mechanical Properties on Friction Stir Welded Al6063 Alloy
Authors: Lingaraju Dumpala, Narasa Raju Gosangi
Abstract:
Friction Stir Welding (FSW) is relatively new, environmentally friendly, versatile, and widely used joining technique for soft materials such as aluminum. FSW has got a lot of attention as a solid-state joining method which avoids many common problems of fusion welding and provides an improved way of producing aluminum joints in a faster way. FSW can be used for various aerospace, defense, automotive and transportation applications. It is necessary to understand the friction stir welded joints and its characteristics to use this new joining technique in critical applications. This study investigated the mechanical properties of friction stir welded aluminum 6063 alloys. FSW is carried out based on the design of experiments using L16 mixed level array by considering tool rotational speeds, tool feed rate and tool tilt angles as process parameters. The optimization of process parameters is carried by Taguchi based regression analysis and the significance of process parameters is analyzed using ANOVA. It is observed that the considered process parameters are high influences the mechanical properties of Al6063.Keywords: FSW, aluminum alloy, mechanical properties, optimization, Taguchi, ANOVA
Procedia PDF Downloads 1332198 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 822197 Feasibility of Small Hydropower Plants Odisha
Authors: Sanoj Sahu, Ramakar Jha
Abstract:
Odisha (India) is in need of reliable, cost-effective power generation. A prolonged electricity crisis and increasing power demand have left over thousands of citizens without access to electricity, and much of the population suffers from sporadic outages. The purpose of this project is to build a methodology to evaluate small hydropower potential, which can be used to alleviate the Odisha’s energy problem among rural communities. This project has three major tasks: the design of a simple SHEP for a single location along a river in the Odisha; the development of water flow prediction equations through a linear regression analysis; and the design of an ArcGIS toolset to estimate the flow duration curves (FDCs) at locations where data do not exist. An explanation of the inputs to the tool, as well has how it produces a suitable output for SHEP evaluation will be presented. The paper also gives an explanation of hydroelectric power generation in the Odisha, SHEPs, and the technical and practical aspects of hydroelectric power. Till now, based on topographical and rainfall analysis we have located hundreds of sites. Further work on more number of site location and accuracy of location is to be done.Keywords: small hydropower, ArcGIS, rainfall analysis, Odisha’s energy problem
Procedia PDF Downloads 4482196 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks
Authors: Tugba Bayoglu
Abstract:
Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification
Procedia PDF Downloads 2792195 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1462194 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis
Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai
Abstract:
The purpose of this study is to forecast the influences of Information and Communication Technology (ICT) on the structural changes of Japanese economies based on Leontief Input-Output (IO) coefficients. This study establishes a statistical analysis to predict the future interrelationships among industries. We employ the Constrained Multivariate Regression (CMR) model to analyze the historical changes of input-output coefficients. Statistical significance of the model is then tested by Likelihood Ratio Test (LRT). In our model, ICT is represented by two explanatory variables, i.e. computers (including main parts and accessories) and telecommunications equipment. A previous study, which analyzed the influences of these variables on the structural changes of Japanese industrial sectors from 1985-2005, concluded that these variables had significant influences on the changes in the business circumstances of Japanese commerce, business services and office supplies, and personal services sectors. The projected future Japanese economic structure based on the above forecast generates the differentiated direct and indirect outcomes of ICT penetration.Keywords: forecast, ICT, industrial structural changes, statistical analysis
Procedia PDF Downloads 3752193 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 1702192 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen
Abstract:
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic
Procedia PDF Downloads 4262191 Associations and Interactions of Delivery Mode and Antibiotic Exposure with Infant Cortisol Level: A Correlational Study
Authors: Samarpreet Singh, Gerald Giesbrecht
Abstract:
Both c-section and antibiotic exposure are linked to gut microbiota imbalance in infants. Such disturbance is associated with the Hypothalamic-Pituitary-Adrenal (HPA) axis function. However, the literature only has contradicting evidence for the association between c-sections and the HPA axis. Therefore, this study aims to test if the mode of delivery and antibiotics exposure is associated with the HPA axis. Also, whether exposure to both interacts with the HPA-axis. It was hypothesized that associations and interactions would be observed. Secondary data analysis was used for this co-relational study. Data for the mode of delivery and antibiotics exposure variables were documented from hospital records or self-questionnaires. In addition, cortisol levels (Area under the curve with respect to increasing (AUCi) and Area under the curve with respect to ground (AUCg)) were based on saliva collected from three months old during the infant’s visit to the lab and after drawing blood. One-way and between-subject ANOVA analyses were run on data. No significant association between delivery mode and infant cortisol level was found, AUCi and AUCg, p > .05. Only the infant’s AUCg was found to be significantly higher if there were antibiotics exposure at delivery (p = .001) or their mothers were exposed during pregnancy (p < .05). Infants born by c-section and exposed to antibiotics at three months had higher AUCi than those born vaginally, p < .02. These results imply that antibiotic exposure before three months is associated with an infant’s stress response. The association might increase if antibiotic exposure occurs three months after a c-section birth. However, more robust and causal evidence in future studies is needed, given a variable group’s statistically weak sample size. Nevertheless, the results of this study still highlight the unintended consequences of antibiotic exposure during delivery and pregnancy.Keywords: HPA-axis, antibiotics, c-section, gut-microbiota, development, stress
Procedia PDF Downloads 732190 Racial Microaggressions: Experiences among International Students in Australia and Its Impact on Stress and Psychological Wellbeing
Authors: Hugo M. Gonzales, Ke Ni Chai, Deanne Mary King
Abstract:
International students are underrepresented in Australian health literature, and this population is especially vulnerable to the well-documented negative impacts associated with racial microaggressions in their adjustment to settling in the new society, as well as to the many challenges they already face as international students. This study investigated the prevalence of racial microaggressions among international students and their impact on stress and psychological well-being. This research was conducted during the COVID-19 pandemic, which has been documented to contribute to anti-Asian racism. Participants included 54 international students, of which 72% were Asian. The Racial and Ethnic Microaggressions Scale (REMS), Perceived Stress Scale (PSS), and the Perceived General Wellbeing Indicator (PGWBI) were used to measure the participants’ responses. All participants reported experiencing racial microaggression in the last six months, and significant correlations and regression models were found between REMS, certain elements of the PSS scale, and time in Australia. Despite the small sample size, this research corroborated outcomes from recent studies and provided insight into the prevalence and impact of racial microaggressions among such populations, highlighting the need for further exploration.Keywords: racial microaggressions, international students, racism, REMS, microaggressions in Australia, stress, psychological wellbeing
Procedia PDF Downloads 1302189 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 1282188 Genetic and Environmental Variation in Reproductive and Lactational Performance of Holstein Cattle
Authors: Ashraf Ward
Abstract:
Effect of calving interval on 305 day milk yield for first three lactations was studied in order to increase efficiency of selection schemes and to more efficiently manage Holstein cows that have been raised on small farms in Libya. Results obtained by processing data of 1476 cows, managed in 935 small scale farms, pointed out that current calving interval significantly affects on milk production for first three lactations (p<0.05). Preceding calving interval affected 305 day milk yield (p<0.05) in second lactation only. Linear regression model accounted for 20-25 % of the total variance of 305 day milk yield. Extension of calving interval over 420, 430, 450 days for first, second and third lactations respectively, did not increase milk production when converted to 305 day lactation. Stochastic relations between calving interval and calving age and month are moderated. Values of Pierson’s correlation coefficients ranged 0.38 to 0.69. Adjustment of milk production in order to reduce effect of calving interval on total phenotypic variance of milk yield is valid for first lactation only. Adjustment of 305 day milk yield for second and third lactations in order to reduce effects of factors “calving age and month” brings about, at the same time, elimination of calving interval effect.Keywords: milk yield, Holstien, non genetic, calving
Procedia PDF Downloads 4172187 Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria
Authors: Olumuyiwa Idowu Ojo, Oluwatobi Peter Olowo
Abstract:
The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava).Keywords: GIS, crop yields, comparative analysis, temperature, rainfall, weather variability
Procedia PDF Downloads 3262186 Domestic Remittances, Household Enterprises, and Household Well-being in Ghana
Authors: Abdul-Majeed Imoro
Abstract:
This paper investigates the interactive effect of domestic remittances and household enterprises on household well-being in Ghana. The study employs data drawn from the seventh wave of the Ghana Living Standard Survey (GLSS 7) comprising 14,009 households located in 1,000 enumeration areas for the 2016/2017 period. This study employs the Ordinary Least Square (OLS) regression technique in estimating the interactive effect of domestic remittances and household enterprises on household well-being. The Linear Probability Model (LPM) is used to estimate the impact of domestic remittances on household enterprises. A Two-Stage Least Square (2SLS) model is employed to solve endogeneity issues between the dependent variable and the explanatory variable. This study reveals the following findings: domestic remittances improve household well-being significantly. Also, there is a significant negative impact of domestic remittances on household enterprises. This implies that households that receive domestic remittances are less likely to engage in household enterprises. Finally, the 2SLS results show a significant and positive impact of the interaction between domestic remittances and household enterprises on household well-being. This study provides empirical evidence of why policymakers need to encourage households that receive domestic remittances to diversify their income sources and invest in other income-generating activities such as household enterprises.Keywords: domestic remittances, household enterprises, household well-being, Ghana
Procedia PDF Downloads 222185 The Planner's Pentangle: A Proposal for a 21st-Century Model of Planning for Sustainable Development
Authors: Sonia Hirt
Abstract:
The Planner's Triangle, an oft-cited model that visually defined planning as the search for sustainability to balance the three basic priorities of equity, economy, and environment, has influenced planning theory and practice for a quarter of a century. In this essay, we argue that the triangle requires updating and expansion. Even if planners keep sustainability as their key core aspiration at the center of their imaginary geometry, the triangle's vertices have to be rethought. Planners should move on to a 21st-century concept. We propose a Planner's Pentangle with five basic priorities as vertices of a new conceptual polygon. These five priorities are Wellbeing, Equity, Economy, Environment, and Esthetics (WE⁴). The WE⁴ concept more accurately and fully represents planning’s history. This is especially true in the United States, where public art and public health played pivotal roles in the establishment of the profession in the late 19th and early 20th centuries. It also more accurately represents planning’s future. Both health/wellness and aesthetic concerns are becoming increasingly important in the 21st century. The pentangle can become an effective tool for understanding and visualizing planning's history and present. Planning has a long history of representing urban presents and future as conceptual models in visual form. Such models can play an important role in understanding and shaping practice. For over two decades, one such model, the Planner's Triangle, stood apart as the expression of planning's pursuit for sustainability. But if the model is outdated and insufficiently robust, it can diminish our understanding of planning practice, as well as the appreciation of the profession among non-planners. Thus, we argue for a new conceptual model of what planners do.Keywords: sustainable development, planning for sustainable development, planner's triangle, planner's pentangle, planning and health, planning and art, planning history
Procedia PDF Downloads 141