Search results for: residency training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3970

Search results for: residency training

1570 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
1569 Design and Characterization of a Smart Composite Fabric for Knee Brace

Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani

Abstract:

In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.

Keywords: smart composites, sensors, smart fabrics, knee brace

Procedia PDF Downloads 178
1568 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 144
1567 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 110
1566 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 187
1565 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
1564 Web Quest as the Tool for Business Writing Skills Enhancement at Technical University EFL Classes

Authors: Nadezda Kobzeva

Abstract:

Under the current trend of globalization, economic and technological dynamics information and the means by which it is delivered and renewed becomes out-of-date rapidly. Thus, educational systems as well as higher education are being seriously tested. New strategies’ developing that is supported by Information and Communication Technology is urgently required. The essential educators’ mission is to meet the demands of the future by preparing our young learners with proper knowledge, skills and innovation capabilities necessary to advance our competitiveness globally. In response to the modern society and future demands, the oldest Siberian Tomsk Polytechnic University has wisely proposed several initiatives to promote the integration of Information and Communication Technology (ICT) in education, and increase the competitiveness of graduates by emphasizing inquiry-based learning, higher order thinking and problem solving. This paper gives a brief overview of how Web Quest as ICT device is being used for language teaching and describes its use advantages for teaching English as a Foreign Language (EFL), in particular business writing skills. This study proposes to use Web Quest to promote higher order thinking and ICT integration in the process of engineers training in Tomsk Polytechnic University, Russia.

Keywords: web quest, web quest in pedagogy, resume (CVs) and cover letter writing skills, ICT integration

Procedia PDF Downloads 379
1563 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice

Authors: Minseock Seo

Abstract:

Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.

Keywords: dental students, endodontic, preclinical practice, self-assessment

Procedia PDF Downloads 253
1562 Torture and Turkey: Legal Situation Related to Torture in Turkey and the Issue of Impunity of Torture

Authors: Zeynep Üskül Engin

Abstract:

Looking upon the world’s history, one can easily understand that the most drastic and evil comes to the human from his own kind. Human, proving that Hobbs was actually right, finally have agreed on taking some necessary measures after the destructive effects of the great World Wars. Surely after this, human rights have been more commonly mentioned in written form and now the priority of the values and goals of a democratic society is to protect its individuals. Due to this fact, the right of living is found to be valuable and all the existing forms of torture, anti-human and humiliating activities have been banned. Turkey, having signed the international papers of human rights, has aimed for eliminating torture through changing its laws and regulations to a certain extent. Monitoring Turkey’s experience, it is likely to say that during certain periods of time systematic torture has been applied. The urge to enter the European Union and verdicts against Turkey, have led to considerable progress in human rights. Besides, changes in law and the comprehensive training for the police, judges, medical and prison staff have resulted in positive improvement related to this issue. Certainly, this current legal update does not completely mean the total elimination of the practice of torture; however, in the commitment of this crime, the ones who have committed are standing a trial and facing severe punishments. In this article, Turkey, with a notorious reputation in international arena is going to be examined through its policy towards torture and defects in practice.

Keywords: torture, human rights, impunity of torture, sociology

Procedia PDF Downloads 463
1561 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study

Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié

Abstract:

Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.

Keywords: business strategy, lean manufacturing, theory of constraints, supply chain

Procedia PDF Downloads 354
1560 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 104
1559 Resource Allocation of Small Agribusinesses and Entrepreneurship Development In Nigeria

Authors: Festus M. Epetimehin

Abstract:

Resources are essential materials required for production of goods and services. Effective allocation of these resources can engender the success of current business activities and its sustainability for future generation. The study examined effect of resource allocation of small agribusinesses on entrepreneurship development in Southwest Nigeria. Sample size of 385 was determined using Cochran’s formula. 350 valid copies of questionnaire were used in the analysis. In order to achieve the objective, research design (descriptive and cross sectional designs) was used to gather data for the study through the administration of questionnaire to respondents. Both descriptive and inferential statistics were used to investigate the objective of the study. The result obtained indicated that resource allocation by small agribusinesses had a substantial positive effect on entrepreneurship development with the p-value of (0.0000) which was less than the 5.0% critical value with a positive regression coefficient of 0.53. The implication of this is that the ability of the entrepreneurs to deploy their resources efficiently through adequate realization of better gross margin could enhance business activities and development. The study recommends that business owners still need some level of serious training and exposure on how to manage modern small agribusiness resources to enhance business performance. The intervention of Agricultural Development Programme (ADP) and other Agricultural institutions are needed in this regard.

Keywords: resource, resource allocation, small businesses, agriculture, entrepreneurship development

Procedia PDF Downloads 51
1558 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
1557 Social Adjustment of Adolescence Living with Step Parent Families in Pakistan

Authors: Akbar Ali

Abstract:

This study played an important role in the investigation of social adjustment of adolescent living with step parent families in Pakistan. Families plays an crucial role in the training and adjustment of adolescents’ personal, social and academic life. Adolescents living with parent families often experience different challenges which affects their social adjustment in the family and which further have impact on their academic and social life. One of central theme investigated in this study is parenting practice and other major theme is parental capital. The objectives of the study were to determine how different parenting styles being practiced in family affects adolescents’ adjustment and what is the role of parental capital in adolescents adjustment. qualitative approach was adopted for this research. Adolescents who are studying at college and living with step parent families participated in this study. Data was collected through interviews. Collected data was analyzed through NVIVO. Through findings, it is stated that parenting style and parental capital determining factors affecting adolescents’ adjustment and family experiences. The study suggest a comprehensive and practical approach for the adjustment of adolescents. Government should establish counselling and enabling facilities for adolescents’ for the wellbeing and better social adjustment.

Keywords: adolescents, academic life, parental capital, parental practices, social adjustment

Procedia PDF Downloads 9
1556 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 28
1555 Mobile Phones in Saudi Arabian EFL Classrooms

Authors: Srinivasa Rao Idapalapati, Manssour Habbash

Abstract:

As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.

Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model

Procedia PDF Downloads 364
1554 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis

Authors: Robert Saputra, Tomas Havlicek

Abstract:

This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.

Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance

Procedia PDF Downloads 14
1553 Quality of Care for the Maternal Complications at Selected Primary and Secondary Health Facilities of Bangladesh: Lessons Learned from a Formative Research

Authors: Mohiuddin Ahsanul Kabir Chowdhury, Nafisa Lira Huq, Afroza Khanom, Rafiqul Islam, Abdullah Nurus Salam Khan, Farhana Karim, Nabila Zaka, Shams El Arifeen, Sk. Masum Billah

Abstract:

After having astounding achievements in reducing maternal mortality and achieving the target for Millennium Development Goal (MDG) 5, the Government of Bangladesh has set new target to reduce Maternal Mortality Ratio (MMR) to 70 per 100,000 live births aligning with targets of Sustainable Development Goals (SDGs). Aversion of deaths from maternal complication by ensuring quality health care could be an important path to accelerate the rate of reduction of MMR. This formative research was aimed at exploring the provision of quality maternal health services at different level of health facilities. The study was conducted in 1 district hospital (DH) and 4 Upazila health complexes (UHC) of Kurigram district of Bangladesh, utilizing both quantitative and qualitative research methods. We conducted 14 key informant interviews with facility managers and 20 in-depth interviews with health care providers and support staff. Besides, we observed 387 normal deliveries from which we found 17 cases of post partum haemorrhage (PPH) and 2 cases of eclampsia during the data collection period extended from July-September 2016. The quantitative data were analyzed by using descriptive statistics, and the qualitative component underwent thematic analysis with the broad themes of facility readiness for maternal complication management, and management of complications. Inadequacy in human resources has been identified as the most important bottleneck to provide quality care to manage maternal complications. The DH had a particular paucity of human resources in medical officer cadre where about 61% posts were unfilled. On the other hand, in the UHCs the positions mostly empty were obstetricians (75%, paediatricians (75%), staff nurses (65%), and anaesthetists (100%). The workload on the existing staff is increased because of the persistence of vacant posts. Unavailability of anesthetists and consultants does not permit the health care providers (HCP) of lower cadres to perform emergency operative procedures and forces them to refer the patients although referral system is not well organized in rural Bangladesh. Insufficient bed capacity, inadequate training, shortage of emergency medicines etc. are other hindrance factors for facility readiness. Among the 387 observed delivery case, 17 (4.4%) were identified as PPH cases, and only 2 cases were found as eclampsia/pre-eclampsia. The majority of the patients were treated with uterine message (16 out of 17, 94.1%) and injectable Oxytocin (14 out of 17, 82.4%). The providers of DH mentioned that they can manage the PPH because of having provision for diagnostic and blood transfusion services, although not as 24/7 services. Regarding management of eclampsia/pre-eclampsia, HCPs provided Diazepam, MgSO4, and other anti-hypertensives. The UHCs did not have MgSO4 at stock even, and one facility manager admitted that they treat eclampsia with Diazepam only. The nurses of the UHCs were found to be afraid to handle eclampsia cases. The upcoming interventions must ensure refresher training of service providers, continuous availability of essential medicine and equipment needed for complication management, availability of skilled health workforce, availability of functioning blood transfusion unit and pairing of consultants and anaesthetists to reach the newly set targets altogether.

Keywords: Bangladesh, health facilities, maternal complications, quality of care

Procedia PDF Downloads 235
1552 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 399
1551 Pharmacovigilance: An Empowerment in Safe Utilization of Pharmaceuticals

Authors: Pankaj Prashar, Bimlesh Kumar, Ankita Sood, Anamika Gautam

Abstract:

Pharmacovigilance (PV) is a rapidly growing discipline in pharmaceutical industries as an integral part of clinical research and drug development over the past few decades. PV carries a breadth of scope from drug manufacturing to its regulation with safer utilization. The fundamental steps of PV not only includes data collection and verification, coding of drugs with adverse drug reactions, causality assessment and timely reporting to the authorities but also monitoring drug manufacturing, safety issues, product quality and conduction of due diligence. Standardization of adverse event information, collaboration of multiple departments in different companies, preparation of documents in accordance to both governmental as well as non-governmental organizations (FDA, EMA, GVP, ICH) are the advancements in discipline of PV. De-harmonization, lack of predictive drug safety models, improper funding by government, non-reporting, and non-acceptability of ADRs by developing countries and reports directly from patients to the monitoring centres respectively are the major road backs of PV. Mandatory pharmacovigilance reporting, frequent inspections, funding by government, educating and training medical students, pharmacists and nurses in this segment can bring about empowerment in PV. This area needs to be addressed with a sense of urgency for the safe utilization of pharmaceuticals.

Keywords: pharmacovigilance, regulatory, adverse event, drug safety

Procedia PDF Downloads 124
1550 Knowledge, Attitude, and Practice of Medical Ethics amongst Paediatric Surgeons and Trainees in Malaysia

Authors: Salehah Tahkin, Norlaila Mustafa, Dayang Anita Abdul Aziz

Abstract:

Knowledge of medical ethics is important to all practitioners so the best care can be delivered to all patients through safe practice. Surgeons are not exceptions to this. Knowledge, attitude, and practice (KAP) of medical ethics among paediatric surgeons and trainees in Malaysia has not been evaluated before. This study aims to determine the level of KAP regarding medical ethics among these groups. This was a cross-sectional study involving three groups of samples, i.e., paediatric surgeons (PS), paediatric surgical trainees (PST), and medical officers with a special interest in paediatric surgery (MO). A validated KAP questionnaire was used. Standard formulas were used to calculate objective indexes for measuring KAP, which were then compared for statistical significance across different sample groups; p less than 0.05 is taken as significant. The index is rated into 5 classes using a score of 0 to 10, i.e., poor (1-2.99), fair (3-4.99), good (5-6.99), very good (7-8.99), and excellent (9-10). There were 117 samples, i.e., PS n=45 (38.5%), PST n=25 (21.3%), and MO n=47 (40.2%). For knowledge, all three groups display a good index score (mean score of 5.44). For attitude, PS and MO also display an index score of good (mean score of 5.81), while the PST index score was fair (4.82). For practice, our study shows a highest score of 7.14 (very good) among PST. However, these differences were not statistically significant (p> 0.05). Conclusion: Training in paediatric surgery must continue to emphasize professionalism and medical ethics education to deliver the best health care services.

Keywords: KAP, medical ethics, paediatric, surgeons, trainees

Procedia PDF Downloads 78
1549 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond

Authors: Zeineb Deymi-Gheriani

Abstract:

In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).

Keywords: active learning, constructivism, experiential learning, Piaget, Vygotsky

Procedia PDF Downloads 351
1548 Explicitation as a Non-Professional Translation Universal: Evidence from the Translation of Promotional Material

Authors: Julieta Alos

Abstract:

Following the explicitation hypothesis, it has been proposed that explicitation is a translation universal, i.e., one of those features that characterize translated texts, and cannot be traced back to interference from a particular language. The explicitation hypothesis has been enthusiastically endorsed by some scholars, and firmly rejected by others. Focusing on the translation of promotional material from English into Arabic, specifically in the luxury goods market, the aims of this study are twofold: First, to contribute to the debate regarding the notion of explicitation in order to advance our understanding of what has become a contentious concept. Second, to add to the growing body of literature on non-professional translation by shedding light on this particular aspect of it. To this end, our study uses a combination of qualitative and quantitative methods to explore a corpus of brochures pertaining to the luxury industry, translated into Arabic at the local marketing agencies promoting the brands in question, by bilingual employees who have no translation training. Our data reveals a preference to avoid creative language choices in favor of more direct advertising messages, suggestive of a general tendency towards explicitation in non-professional translation, beyond what is dictated by the grammatical and stylistic constraints of Arabic. We argue, further, that this translation approach is at odds with the principles of luxury advertising, which emphasize implicitness and ambiguity, and view language as an extension of the creative process involved in the production of the luxury item.

Keywords: English-Arabic translation, explicitation, non-professional translation, promotional texts

Procedia PDF Downloads 375
1547 Relationship between Body Composition and Balance in Young Adults

Authors: Ferruh Taspinar, Gulce K. Seyyar, Gamze Kurt, Eda O. Okur, Emrah Afsar, Ismail Saracoglu, Betul Taspinar

Abstract:

Overweight and obesity has been associated with postural balance. The aim of this study was to investigate the relationship between body composition and balance. One hundred and thirty two young adults (58 male, 74 female) were included in the study. Mean age of participants were found as 21.21±1.51 years. Body composition (body mass index, total body fat ratio, total body muscle ratio) and balance (right anterior, right postero-medial, right postero-lateral, left anterior, left postero-medial, left postero-lateral) were evaluated by Tanita BC-418 and Y balance test, respectively. Pearson correlation analysis was used to evaluate the correlation between the parameters. Significance level in statistical analysis was accepted as 0.05. According to results, no correlation was found between body mass index and balance parameters. There was negative correlation between total body fat ratio and balance parameters (r=0.419-0.509, p˂0.05). On the other hand, positive correlation was found between total body muscle ratio and balance parameters (r=0.390-0.494, p˂0.05). This study demonstrated that body fat and muscle ratio affects the balance. Body composition should be considered in rehabilitation programs including postural balance training.

Keywords: balance, body composition, body mass, young adults

Procedia PDF Downloads 374
1546 Effects of Smartphone Social Applications on Elderly People’s Quality of Life

Authors: Seyed Ebrahim Hosseini, Shahbaz Pervez

Abstract:

As people go through aging, maintenance and improvement of the quality of life become more important for them. To know the role of smartphone technology and communications applications on quality of life, a sample group of old people living in Dar-Iran was selected for a quasi-experimental study. The participants were registered senior inhabitants from public health centers in Dar, Iran in 2022. The number of participants was 39. Participants were randomly categorized into intervention and control groups. A validated Persian version of the Control, Autonomy, Self-realisation, Pleasure scale (CASP-19) scale questionnaire was provided for them which answers were used for the quality of life assessment. The paired t-test between pre-and post-test (t= -8.45, p<.00), post-and follow-up-test (t= -2.12, p=.01), and pre-test and the follow-up test (t= -8.27, p<.00) in the intervention group revealed a considerable mean difference. Based on the results of paired t-test for the control group, this was not significant between pre-test and post-test (t= 1.26, p=.15), post-test and follow-up test (t= .33, p=.67) and pre-test and follow-up test (t= 1.85, p=.08) for quality of life. Considering the educational training associated with it, this study aimed at helping families and aging field practitioners to understand the essentiality of modern communication technology teaching in promoting a greater life quality of the elderly’s community.

Keywords: Iranian elderly, quality of life, smartphone, social applications, CASP-19

Procedia PDF Downloads 146
1545 Investigating the Relationship between Emotional Intelligence and Self-Efficacy of Physical Education Teachers in Ilam Province

Authors: Ali Heyrani, Maryam Saidyousefi

Abstract:

The aim of the present study was to investigate the relationship between emotional intelligence and Self-Efficacy of physical education teachers in Ilam province. The research method is descriptive correlational. The study participants were of 170 physical education teachers (90 males, 80 females) with an age range of 20 to 50 years, who were selected randomly. The instruments for data collection were Emotional Intelligence Questionnaire Bar-on (1997) to assess the Emotional Intelligence teachers and Self-Efficacy Questionnaire to measure their Self-Efficacy. The questionnaires used in the interior are reliable and valid. To analyze the data, descriptive statistics and inferential tests (Kolmogorov-Smirnov test, Pearson correlation and multiple regression) at a significance level of P <0/ 05 were used. The Results showed that there is a significant positive relationship between totall emotional intelligence and Self-Efficacy of teachers, so the more emotional intelligence of physical education teachers the better the extent of Self-Efficacy. Also, the results arising from regression analysis gradually showed that among components of emotional intelligence, three components, the General Mood, Adaptability, and Interpersonal Communication to Self-Efficacy are of a significant positive relationship and are able to predict the Self-Efficacy of physical education teachers. It seems the application of this study ҆s results can help to education authorities to promote the level of teachers’ emotional intelligence and therefore the improvement of their Self-Efficacy and success in learners’ teaching and training.

Keywords: emotional intelligence, self-efficacy, physical education teachers, Ilam province

Procedia PDF Downloads 522
1544 Making Political Leaders Responsible Leaders in an Effort to Reduce Corruption

Authors: Maria Krambia-Kapardis, Andreas Kapardis

Abstract:

The relevant literature has been inundated with arguments for ethics, moral values, honesty, resilience, trust in leadership as well as responsible leadership. In many countries around the globe, and as shown by some recent reports, many political leaders are not role models and do not show best practices by being ethical, responsible, compassionate, and resilient. Journalists, whistleblowers, WikiLeaks, Al Jazeera, and the International Consortium of Investigative Journalists (ICIJ) have been brought out from the shadow of political leaders who lack the virtues/attributes outlined above by the UN Global Compact. A number of political leaders who lack ethical and responsible leadership skills will continue to find loopholes to enrich themselves and their close friends and relatives. Some researchers use the Millon Inventory of Diagnostic; however, this test, while it provides helpful and useful insights into the personality of a person who leads or inspire his/her people but does not show if that person is ethical, motivating, and empowers his people with trust and honesty. Thus, it is recommended that political leaders ought to undergo training that encompasses Aristotelian Ethics by embedding the appropriate values and behaviours in their strategies, policies, and decisions, enhancing the change factors that will help in the implementation of a more sustainable development model. Finally, there is a need to develop a pedagogy and a curriculum which enables the development of responsible political leaders.

Keywords: political leaders, corruption, anti-corruption, political corruption

Procedia PDF Downloads 74
1543 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 384
1542 When Helping Hurts: Addressing Violence in Healthcare Settings

Authors: Jason Maffia, Maria D’urso, Robert Crupi, Margaret Cartmell

Abstract:

The emotional aspects of traumatic events such as workplace violence are often ignored, causing low productivity, disillusionment, and resentment within an organization. As a result, if workplace violence, particularly in healthcare settings, is not adequately addressed, it will become a phenomenon, undermining the peace and stability among the active communities while also posing a risk to the population's health and well-being. This review intends to identify the risk factors and the implications of workplace violence in healthcare settings and highlight the collaborative efforts needed in sustaining control and prevention measures against workplace violence. It is essential that health care organizations are prepared physically and emotionally for traumatic situations. This study explores the theoretical nature of addressing work-related violence in healthcare settings as well as traumatic stress reactivity and the context within which reactions occur and recovery takes place. Cognitive, social, and organizational influences on response are identified and used to tentatively offer explanations for identifying security risks, development, and implementation of de-escalation teams, CISM programs and training staff in violence prevention are among strategies hospitals are employing to keep workers and patients safe. General conclusion regarding the implications for intervention effectiveness and design are discussed.

Keywords: healthcare settings, stress reactions, traumatic events, workplace violence

Procedia PDF Downloads 75
1541 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 30