Search results for: real-time spatial big data
24303 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 41624302 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health
Authors: Minna Pikkarainen, Yueqiang Xu
Abstract:
The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.Keywords: blockchain, health data, platform, action design
Procedia PDF Downloads 10424301 Using Learning Apps in the Classroom
Authors: Janet C. Read
Abstract:
UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy
Procedia PDF Downloads 7524300 The Effect of Bilingualism on Prospective Memory
Authors: Aslı Yörük, Mevla Yahya, Banu Tavat
Abstract:
It is well established that bilinguals outperform monolinguals on executive function tasks. However, the effects of bilingualism on prospective memory (PM), which also requires executive functions, have not been investigated vastly. This study aimed to compare bi and monolingual participants' PM performance in focal and non-focal PM tasks. Considering that bilinguals have greater executive function abilities than monolinguals, we predict that bilinguals’ PM performance would be higher than monolinguals on the non-focal PM task, which requires controlled monitoring processes. To investigate these predictions, we administered the focal and non-focal PM task and measured the PM and ongoing task performance. Forty-eight Turkish-English bilinguals residing in North Macedonia and forty-eight Turkish monolinguals living in Turkey between the ages of 18-30 participated in the study. They were instructed to remember responding to rarely appearing PM cues while engaged in an ongoing task, i.e., spatial working memory task. The focality of the task was manipulated by giving different instructions for PM cues. In the focal PM task, participants were asked to remember to press an enter key whenever a particular target stimulus appeared in the working memory task; in the non-focal PM task, instead of responding to a specific target shape, participants were asked to remember to press the enter key whenever the background color of the working memory trials changes to a specific color (yellow). To analyze data, we performed a 2 × 2 mixed factorial ANOVA with the task (focal versus non-focal) as a within-subject variable and language group (bilinguals versus monolinguals) as a between-subject variable. The results showed no direct evidence for a bilingual advantage in PM. That is, the group’s performance did not differ in PM accuracy and ongoing task accuracy. However, bilinguals were overall faster in the ongoing task, yet this was not specific to PM cue’s focality. Moreover, the results showed a reversed effect of PM cue's focality on the ongoing task performance. That is, both bi and monolinguals showed enhanced performance in the non-focal PM cue task. These findings raise skepticism about the literature's prevalent findings and theoretical explanations. Future studies should investigate possible alternative explanations.Keywords: bilingualism, executive functions, focality, prospective memory
Procedia PDF Downloads 11724299 Road Safety in the Great Britain: An Exploratory Data Analysis
Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari
Abstract:
The Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse the Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. In this paper, we do an exploratory data analysis using STATS19 data. For the past 30 years, the UK has had a good record in reducing fatalities. The UK ranked third based on the number of road deaths per million inhabitants. There were around 165,000 accidents reported in the Great Britain in 2009 and it has been decreasing every year until 2019 which is under 120,000. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe.Keywords: road safety, data analysis, openstreetmap, feature expanding.
Procedia PDF Downloads 14424298 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 23324297 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 4124296 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.Keywords: rule induction, decision table, missing data, noise
Procedia PDF Downloads 39824295 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 14024294 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment
Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla
Abstract:
Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity
Procedia PDF Downloads 17224293 Assessing Urban Health Disparities in South Asia: A Comparative Study Using the Urban Health Index
Authors: Fiza Azam, Sahar Zia, Fatima Nazir Ali, Aysha Hanif
Abstract:
Health is a fundamental human right, and a healthy population is essential for the prosperity and sustainable development of any country. This research is aligned with United Nations' Goal 3: Good Health and Well-being. It aims to assess and rank key health indicators across selected South Asian countries. The study focuses on urban areas in these nations, drawing on data from the World Bank’s primary collection of relevant indicators and specific health determinants outlined by the World Health Organization (WHO). These determinants include the physical environment, income and social status, education, social support networks, and personal behavior. To evaluate disparities in urban health across the region, the Urban Health Index (UHI) developed by Georgia State University, USA, is employed, followed by a mapping technique including visualization through a choropleth map to identify the pattern of spatial variations in our key variables, such as socioeconomic indicators across the region. This index serves as a comparative tool to rank health outcomes, where higher UHI values indicate better health conditions. The findings reveal notable disparities across South Asia. Afghanistan, with the lowest UHI score of 0.0423, ranks first, indicating the least favorable urban health conditions. Pakistan follows with a UHI score of 0.1190. Bangladesh and India rank third and fourth with UHI scores of 0.3099 and 0.3250, respectively. The Maldives and Sri Lanka rank fifth and sixth, with UHI scores of 0.3432 and 0.3495. Bhutan is ranked seventh with a score of 0.4750. Nepal, with a UHI score of 0.5012, ranks eighth, indicating the best urban health conditions among the countries studied. The findings of this research are crucial for addressing health disparities, improving living conditions, and enhancing social well-being in the region. These insights can inform policy measures aimed at reducing inequalities and promoting sustainable urban health in South Asia.Keywords: urban health index, health disparities, sustainable development, South Asia, World Health Organization, United Nations, living conditions, public health
Procedia PDF Downloads 1924292 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 11824291 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks
Procedia PDF Downloads 23224290 Model Predictive Controller for Pasteurization Process
Authors: Tesfaye Alamirew Dessie
Abstract:
Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.Keywords: MPC, PID, ARX, pasteurization
Procedia PDF Downloads 16724289 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets
Procedia PDF Downloads 12724288 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 20224287 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities
Procedia PDF Downloads 15424286 Courtyard Evolution in Contemporary Sustainable Living
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behaviour will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects as intelligently claimed by Jonathan Hill in his Weather Architecture discourse. Furthermore, following Pallasmaa’s understanding, the building will be seen not as an end itself and the elements of an architectural experience as having a verb form rather than being nouns. This will further enhance the notion of merging the subject-human and the object-building as discussed by Julio Bermudez. This eventually will enable to generate the discussion of the understanding of the building constructed according to the specifics of place and inhabitants, shaped by its physical and human topography as referred by Adam Sharr in relation to Heidegger’s thinking. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. The above premises will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. It aims at capturing not only its direct and quite obvious bioclimatic features, but rather to evolve them by adjusting the whole house in a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. A new social identity of people, directly involved and interacting with the weather and climatic conditions will be seen as the result of balancing the social with the technological sustainability, the immaterial and the material aspects of the built environment.Keywords: building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture
Procedia PDF Downloads 42224285 Galaxy Rotation Curves from Self-Consistent Gravitational Energy Distributions
Authors: Rudi Van Nieuwenhove
Abstract:
This paper explores a gravitational configuration arising as a solution to the Einstein field equations, grounded in a reinterpretation of the gravitational pseudo-tensor. The proposed solution encapsulates a stable, extended, and localized energy distribution that self-consistently generates its own gravitational field. By leveraging this methodology, we examine the structure’s properties and its compatibility with observations of galactic rotation curves. A detailed analysis demonstrates that the gravitational effects of this configuration align with the observed flat rotation curves of galaxies, such as the Milky Way, without requiring the introduction of additional material components. Using the Milky Way as a case study, we calculate the velocity profile induced by the structure and show its consistency with observed data across a range of galactic radii. The profiles of key physical quantities such as mass density, gravitational potential, radial pressure, and tangential pressure are derived and analyzed, revealing the intrinsic properties of the configuration. These profiles provide insight into the balance of forces that stabilize the structure and ensure its consistency with observations. Beyond rotation curves, the implications of this gravitational solution extend to broader cosmological phenomena. In particular, the structure offers a potential mechanism for enhanced gravitational clustering in the early universe, aiding in the rapid accumulation of baryonic matter and providing a pathway for the formation of the first galaxies. Additionally, the configuration’s energy distribution and spatial extension suggest possible interactions with the large-scale expansion of the universe, raising questions about its role in influencing cosmic acceleration. The methodology underlying this solution involves a re-evaluation of the energy-momentum tensor and its contribution to spacetime curvature, emphasizing the importance of non-local effects and self-consistent feedback mechanisms. This approach leads to a stable, scale-dependent configuration whose properties bridge the gap between small-scale structures and cosmological dynamics.Keywords: einstein field equations, galactic rotation curves, gravitational pseudo-tensor, cosmological dynamics
Procedia PDF Downloads 1024284 Cybervetting and Online Privacy in Job Recruitment – Perspectives on the Current and Future Legislative Framework Within the EU
Authors: Nicole Christiansen, Hanne Marie Motzfeldt
Abstract:
In recent years, more and more HR professionals have been using cyber-vetting in job recruitment in an effort to find the perfect match for the company. These practices are growing rapidly, accessing a vast amount of data from social networks, some of which is privileged and protected information. Thus, there is a risk that the right to privacy is becoming a duty to manage your private data. This paper investigates to which degree a job applicant's fundamental rights are protected adequately in current and future legislation in the EU. This paper argues that current data protection regulations and forthcoming regulations on the use of AI ensure sufficient protection. However, even though the regulation on paper protects employees within the EU, the recruitment sector may not pay sufficient attention to the regulation as it not specifically targeting this area. Therefore, the lack of specific labor and employment regulation is a concern that the social partners should attend to.Keywords: AI, cyber vetting, data protection, job recruitment, online privacy
Procedia PDF Downloads 9324283 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40624282 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 25924281 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.Keywords: cloud compliance, cloud security, data governance, privacy protection
Procedia PDF Downloads 12324280 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa
Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees
Abstract:
The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.Keywords: solar energy, solar radiation, ERA-5, potential energy
Procedia PDF Downloads 21624279 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data
Authors: Fan Gao, Lior Pachter
Abstract:
The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome
Procedia PDF Downloads 15824278 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication
Authors: Farhan A. Alenizi
Abstract:
Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing
Procedia PDF Downloads 16324277 Rethinking Urban Informality through the Lens of Inclusive Planning and Governance in Contemporary Cities: A Case Study of Johannesburg, South Africa
Authors: Blessings Masuku
Abstract:
Background: Considering that Africa is urbanizing faster than any other region globally, managing cities in the global South has become the centerpiece for the New Urban Agenda (i.e., a shared vision of how we rethink, rebuild, and manage our cities for a better and more sustainable future). This study is centered on governance and planning of urban informality practices with particular reference to the relationship between the state, informal actors (e.g., informal traders and informal dwellers), and other city stakeholders who are public space users (commuters, businesses, and environmental activists), and how informal actors organize themselves to lobby the state and claim for their rights in the city, and how they navigate their everyday livelihood strategies. Aim: The purpose of this study is to examine and interrogate contemporary approaches, policy and regulatory frameworks to urban spatial planning and management of informality in one of South Africa’s busiest and major cities, Johannesburg. Setting: The study uses the metropolitan region of the city of Johannesburg, South Africa to understand how this contemporary industrial city manages urban informality practices, including the use of public space, land zoning and street life, and paying a closer look at what progress has been made and gaps in their inclusive urban policy frameworks. Methods: This study utilized a qualitative approach that includes surveys (open-ended questions), archival research (i., e policy and other key document reviews), and key interviews mainly with city officials, and informality actors. A thematic analysis was used to analyze the data collected. Contribution: This study contributes to large urban informality scholarship in the global South cities by exploring how major cities particularly in Africa regulate and manage informality patterns and practices in their quest to build “utopian” smart cities. This study also brings a different perspective on the hacking ways used by the informal actors to resist harsh regulations and remain invisible in the city, which is something that previous literature has barely delved in-depth.Keywords: inclusive planning and governance, infrastructure systems, livelihood strategies urban informality, urban space
Procedia PDF Downloads 7624276 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor
Authors: Niloofar Zebarjad
Abstract:
This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket
Procedia PDF Downloads 30124275 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14324274 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE
Authors: Parimalah Velo, Ahmad Zakaria
Abstract:
Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging
Procedia PDF Downloads 272