Search results for: energy anomaly detection
9410 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1359409 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 2699408 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles
Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra
Abstract:
A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin
Procedia PDF Downloads 3979407 Inadequate Intake of Energy and Nutrients: A Comparative Cross-Sectional Study Between Sport and Non-sport Science University Students of Southern Ethiopia
Authors: Beruk Berhanu Desalegn, Kebede Awgechew, Addisalem Mesfin
Abstract:
Introduction: This study aimed to investigate and compare the energy and selected nutrient intakes of sport science and non-sport science University students of Southern Ethiopia. Method: Multiple-day dietary data were collected from 166 university students (76 sport science and 90 non-sport sciences). Average daily energy and nutrient intake, and inadequate intakes were calculated using NutriSurvey (NS). Results: There were significant differences (p < 0.05) in the median intakes of energy, total carbohydrate, and vitamin B1 between female students from the sport science and non-sport science groups, but only the median intake of iron was significantly different (p < 0.05) between the male sport and non-sport science students’ group. The prevalence of inadequate intake of vitamin B1 were significantly (p<0.05) higher in the male and female from the non-sport science groups compared to the male and female students’ groups in the sport science, respectively. Whereas, the prevalence of inadequate iron intake by the male sport science students’ group was significantly (p<0.05) higher compared to their counterparts. Similarly, the prevalence of inadequate energy among the females from the sport science group was significantly (p<0.05) higher compared to the female students from the non-sport science department group. The prevalence of inadequate intakes of dietary energy, and the majority of the nutrients (protein, fat, vitamin A, B1, B2, and magnesium) were high (>50%) in selected University students. Conclusion: The energy and majority of nutrient intakes by the students in the selected universities of southern Ethiopia were sub-optimal. Therefore, activities that will improve the dietary intake of University students should include weekly meal plan revision considering their average recommended nutrient intake (RNI).Keywords: dietary intake, sport science, University students, Ethiopia
Procedia PDF Downloads 909406 India’s Energy Transition, Pathways for Green Economy
Authors: B. Sudhakara Reddy
Abstract:
In modern economy, energy is fundamental to virtually every product and service in use. It has been developed on the dependence of abundant and easy-to-transform polluting fossil fuels. On one hand, increase in population and income levels combined with increased per capita energy consumption requires energy production to keep pace with economic growth, and on the other, the impact of fossil fuel use on environmental degradation is enormous. The conflicting policy objectives of protecting the environment while increasing economic growth and employment has resulted in this paradox. Hence, it is important to decouple economic growth from environmental degeneration. Hence, the search for green energy involving affordable, low-carbon, and renewable energies has become global priority. This paper explores a transition to a sustainable energy system using the socio-economic-technical scenario method. This approach takes into account the multifaceted nature of transitions which not only require the development and use of new technologies, but also of changes in user behaviour, policy and regulation. The scenarios that are developed are: baseline business as usual (BAU) as well as green energy (GE). The baseline scenario assumes that the current trends (energy use, efficiency levels, etc.) will continue in future. India’s population is projected to grow by 23% during 2010 –2030, reaching 1.47 billion. The real GDP, as per the model, is projected to grow by 6.5% per year on average between 2010 and 2030 reaching US$5.1 trillion or $3,586 per capita (base year 2010). Due to increase in population and GDP, the primary energy demand will double in two decades reaching 1,397 MTOE in 2030 with the share of fossil fuels remaining around 80%. The increase in energy use corresponds to an increase in energy intensity (TOE/US $ of GDP) from 0.019 to 0.036. The carbon emissions are projected to increase by 2.5 times from 2010 reaching 3,440 million tonnes with per capita emissions of 2.2 tons/annum. However, the carbon intensity (tons per US$ of GDP) decreases from 0.96 to 0.67. As per GE scenario, energy use will reach 1079 MTOE by 2030, a saving of about 30% over BAU. The penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. The study develops new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. Our scenarios are, to a great extent, based on the existing technologies. The challenges to this path lie in socio-economic-political domains. However, to attain a green economy the appropriate policy package should be in place which will be critical in determining the kind of investments that will be needed and the incidence of costs and benefits. These results provide a basis for policy discussions on investments, policies and incentives to be put in place by national and local governments.Keywords: energy, renewables, green technology, scenario
Procedia PDF Downloads 2549405 CFD Simulation Research on a Double Diffuser for Wind Turbines
Authors: Krzysztof Skiba, Zdzislaw Kaminski
Abstract:
Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices.Keywords: wind turbine, renewable energy, cfd, numerical analysis
Procedia PDF Downloads 3119404 Implementing Biogas Technology in Rural Areas of Limpopo: Analysis of Gawula, Mopani District in South Africa
Authors: Thilivhali E. Rasimphi, David Tinarwo
Abstract:
Access to energy is crucial in poverty alleviation, economic growth, education, and agricultural improvement. The best renewable energy source is one which is locally available, affordable, and can easily be used and managed by local communities. The usage of renewable energy technology has the potential to alleviate many of the current problems facing rural areas. To address energy poverty, biogas technology has become an important part of resolving such. This study, therefore, examines the performance of digesters in Gawula village; it also identifies the contributing factors to the adoption and use of the technology. Data was collected using an open-ended questionnaire from biogas users. To evaluate the performance of the digesters, a data envelopment analysis (DEA) non-parametric technique was used, and to identify key factors affecting adoption, a logit model was applied. The reviewed critical barriers to biogas development in the area seem to be a poor institutional framework, poor infrastructure, a lack of technical support, user training on maintenance and operation, and as such, the implemented plants have failed to make the desired impact. Thus most digesters were abandoned. To create awareness amongst rural communities, government involvement is key, and there is a need for national programs. Biogas technology does what few other renewable energy technologies do, which is to integrate waste management and energy. This creates a substantial opportunity for biogas generation and penetration. That is, a promising pathway towards achieving sustainable development through biogas technology.Keywords: domestic biogas technology, economic, sustainable, social, rural development
Procedia PDF Downloads 1439403 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 4519402 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source
Authors: Raj Kumar Rajak, Bharat Mishra
Abstract:
Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.Keywords: bio-batteries, electricity, cow-dung, electrodes, non-conventional
Procedia PDF Downloads 2079401 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication
Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye
Abstract:
Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite
Procedia PDF Downloads 1309400 Automatic Censoring in K-Distribution for Multiple Targets Situations
Authors: Naime Boudemagh, Zoheir Hammoudi
Abstract:
The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.Keywords: parameters estimation, method of moments, automatic censoring, K distribution
Procedia PDF Downloads 3769399 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis
Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti
Abstract:
Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis
Procedia PDF Downloads 1659398 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection
Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar
Abstract:
Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE
Procedia PDF Downloads 3719397 Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification
Authors: Bo Ram Choi, Ji Su Kim, Juyeon Cho, Hyukjin Lee
Abstract:
Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads.Keywords: rolling circle amplification (RCA), Escherichia coli (E. coli), point of care testing (POCT), beads aggregation, capillary tube
Procedia PDF Downloads 3719396 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.Keywords: circular shear panel damper, FE analysis, hysteretic behavior, large deformation
Procedia PDF Downloads 3909395 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 1749394 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys
Authors: A. Azizi, M. Toubane, L. Chetibi
Abstract:
Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution
Procedia PDF Downloads 4439393 Enhancing Greenhouse Productivity and Energy Efficiency Through UV-IR Reflective Coatings and Dust Mitigation: A Case Study in Saudi Arabia
Authors: Tayirjan Taylor Isimjan, Essam Jamea, Muien Qaryouti
Abstract:
The demand for efficient greenhouse production is escalating, necessitating continuous improvements in controlled plant growth environments. Central to maximizing growth are critical light-related factors, including quantity, quality, and geometric distribution of intercepted radiation. This becomes particularly crucial in regions like the Middle East, characterized by high solar radiation and dusty atmospheric conditions. Existing greenhouse technologies often rely on additional expensive equipment to manage light conditions effectively. In this study, we propose a distinct approach employing functional coatings to mitigate dust and block UV and IR radiation, thereby conserving energy and enhancing productivity. By combining UV-IR reflective coatings with dust mitigation strategies, we aim to address both environmental challenges and energy consumption issues faced by greenhouse agriculture in Saudi Arabia.Keywords: greenhouse, UV-IR reflective coatings, dust mitigation, energy efficiency, productivity
Procedia PDF Downloads 659392 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator
Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac
Abstract:
With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.Keywords: triboelectric nanogenerator, wind energy, vortex design, large scale energy
Procedia PDF Downloads 2179391 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 479390 Challenges and Proposed Solutions Toward Successful Dealing with E-Waste in Kuwait
Authors: Salem Alajmi, Bader Altaweel
Abstract:
Kuwait, like many parts of the world, has started facing the dangerous growth of electrical and electronic wastes. This growth has been noted last two decades, coming along with the development of mobile phones, computers, TVs, as well as other electronic devices and electrical equipment. Kuwait is already among the highest global producers of electronic waste (E-waste) in kg per capita. Furthermore, Kuwait is among the global countries that set high-level future targets in renewable energy projects. Accumulation of this electronic waste, as well as accelerated renewable energy projects, will lead to the increase of future threats to the country. In this research, factors that lead to the increase the e-waste in Kuwait are presented. Also, the current situations of dealing with e-waste in the country as well as current challenges are examined. The impact of renewable energy projects on future E-wastes accumulation is considered. Moreover, this research proposes the best strategies and practices toward successfully dealing with the waste of electronic devices and renewable energy technologies.Keywords: Kuwait, e-waste, extended producer responsibility, environment, recycle, recovery
Procedia PDF Downloads 1869389 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 2359388 Literature Review: Adversarial Machine Learning Defense in Malware Detection
Authors: Leidy M. Aldana, Jorge E. Camargo
Abstract:
Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.Keywords: Malware, adversarial, machine learning, defense, attack
Procedia PDF Downloads 769387 Power Generating Embedment beneath Vehicle Traffic Asphalt Roads
Authors: Ahmed Khalil
Abstract:
The discoveries in material sciences create an impulse in renewable energy transmission. Application techniques become more accessible by applied sciences. Variety of materials, application methods, and performance analyzing techniques can convert daily life functions to energy sources. These functions not only include natural sources like sun, wind, or water but also comprise the motion of tools used by human beings. In line with this, vehicles' motion, speed and weights come to the scene as energy sources together with piezoelectric nano-generators beneath the roads. Numerous application examples are put forward with repeated average performance, versus the differentiating challenges depending on geography and project conditions. Such holistic approach provides way for feed backs on research and improvement process of nano-generators beneath asphalt roads. This paper introduces the specific application methods of piezoelectric nano-generator beneath asphalt roads of Ahmadi Township in Kuwait.Keywords: nano-generator pavements, piezoelectric, renewable energy, transducer
Procedia PDF Downloads 1189386 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan
Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary
Abstract:
This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment
Procedia PDF Downloads 1709385 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application
Authors: Marwa M. Ibrahim
Abstract:
The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts
Procedia PDF Downloads 1099384 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs
Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam
Abstract:
The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.Keywords: Concrete, iron ore, ice rink, energy saving
Procedia PDF Downloads 3459383 Molecular Detection of mRNA bcr-abl and Circulating Leukemic Stem Cells CD34+ in Patients with Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia and Its Association with Clinical Parameters
Authors: B. Gonzalez-Yebra, H. Barajas, P. Palomares, M. Hernandez, O. Torres, M. Ayala, A. L. González, G. Vazquez-Ortiz, M. L. Guzman
Abstract:
Leukemia arises by molecular alterations of the normal hematopoietic stem cell (HSC) transforming it into a leukemic stem cell (LSC) with high cell proliferation, self-renewal, and cell differentiation. Chronic myeloid leukemia (CML) originates from an LSC-leading to elevated proliferation of myeloid cells and acute lymphoblastic leukemia (ALL) originates from an LSC development leading to elevated proliferation of lymphoid cells. In both cases, LSC can be identified by multicolor flow cytometry using several antibodies. However, to date, LSC levels in peripheral blood (PB) are not established well enough in ALL and CML patients. On the other hand, the detection of the minimal residue disease (MRD) in leukemia is mainly based on the identification of the mRNA bcr-abl gene in CML patients and some other genes in ALL patients. There is no a properly biomarker to detect MDR in both types of leukemia. The objective of this study was to determine mRNA bcr-abl and the percentage of LSC in peripheral blood of patients with CML and ALL and identify a possible association between the amount of LSC in PB and clinical data. We included in this study 19 patients with Leukemia. A PB sample was collected per patient and leukocytes were obtained by Ficoll gradient. The immunophenotype for LSC CD34+ was done by flow cytometry analysis with CD33, CD2, CD14, CD16, CD64, HLA-DR, CD13, CD15, CD19, CD10, CD20, CD34, CD38, CD71, CD90, CD117, CD123 monoclonal antibodies. In addition, to identify the presence of the mRNA bcr-abl by RT-PCR, the RNA was isolated using TRIZOL reagent. Molecular (presence of mRNA bcr-abl and LSC CD34+) and clinical results were analyzed with descriptive statistics and a multiple regression analysis was performed to determine statistically significant association. In total, 19 patients (8 patients with ALL and 11 patients with CML) were analyzed, 9 patients with de novo leukemia (ALL = 6 and CML = 3) and 10 under treatment (ALL = 5 and CML = 5). The overall frequency of mRNA bcr-abl was 31% (6/19), and it was negative in ALL patients and positive in 80% in CML patients. On the other hand, LSC was determined in 16/19 leukemia patients (%LSC= 0.02-17.3). The Novo patients had higher percentage of LSC (0.26 to 17.3%) than patients under treatment (0 to 5.93%). The amount of LSC was significantly associated with the amount of LSC were: absence of treatment, the absence of splenomegaly, and a lower number of leukocytes, negative association for the clinical variables age, sex, blasts, and mRNA bcr-abl. In conclusion, patients with de novo leukemia had a higher percentage of circulating LSC than patients under treatment, and it was associated with clinical parameters as lack of treatment, absence of splenomegaly and a lower number of leukocytes. The mRNA bcr-abl detection was only possible in the series of patients with CML, and molecular detection of LSC could be identified in the peripheral blood of all leukemia patients, we believe the identification of circulating LSC may be used as biomarker for the detection of the MRD in leukemia patients.Keywords: stem cells, leukemia, biomarkers, flow cytometry
Procedia PDF Downloads 3589382 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery
Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina
Abstract:
In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries
Procedia PDF Downloads 1669381 Relation between Electrical Properties and Application of Chitosan Nanocomposites
Authors: Evgen Prokhorov, Gabriel Luna-Barcenas
Abstract:
The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites
Procedia PDF Downloads 214