Search results for: uniform error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2786

Search results for: uniform error

416 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 273
415 Corruption, Institutional Quality and Economic Growth in Nigeria

Authors: Ogunlana Olarewaju Fatai, Kelani Fatai Adeshina

Abstract:

The interplay of corruption and institutional quality determines how effective and efficient an economy progresses. An efficient institutional quality is a key requirement for economic stability. Institutional quality in most cases has been used interchangeably with Governance and these have given room for proxies that legitimized Governance as measures for institutional quality. A poorly-tailored institutional quality has a penalizing effect on corruption and economic growth, while defective institutional quality breeds corruption. Corruption is a hydra-headed phenomenon as it manifests in different forms. The most celebrated definition of corruption is given as “the use or abuse of public office for private benefits or gains”. It also denotes an arrangement between two mutual parties in the determination and allocation of state resources for pecuniary benefits to circumvent state efficiency. This study employed Barro (1990) type augmented model to analyze the nexus among corruption, institutional quality and economic growth in Nigeria using annual time series data, which spanned the period 1996-2019. Within the analytical framework of Johansen Cointegration technique, Error Correction Mechanism (ECM) and Granger Causality tests, findings revealed a long-run relationship between economic growth, corruption and selected measures of institutional quality. The long run results suggested that all the measures of institutional quality except voice & accountability and regulatory quality are positively disposed to economic growth. Moreover, the short-run estimation indicated a reconciliation of the divergent views on corruption which pointed at “sand the wheel” and “grease the wheel” of growth. In addition, regulatory quality and the rule of law indicated a negative influence on economic growth in Nigeria. Government effectiveness and voice & accountability, however, indicated a positive influence on economic growth. The Granger causality test results suggested a one-way causality between GDP and Corruption and also between corruption and institutional quality. Policy implications from this study pointed at checking corruption and streamlining institutional quality framework for better and sustained economic development.

Keywords: institutional quality, corruption, economic growth, public policy

Procedia PDF Downloads 170
414 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 8
413 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.

Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers

Procedia PDF Downloads 483
412 Shear Strength Envelope Characteristics of LimeTreated Clays

Authors: Mohammad Moridzadeh, Gholamreza Mesri

Abstract:

The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.

Keywords: Brenna clay, friction resistance, lime treatment, residual

Procedia PDF Downloads 159
411 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method

Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.

Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image

Procedia PDF Downloads 313
410 Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines

Authors: Aliaa M. Issa, Mahmoud N. ElRouby, Sahar A. S. Ahmad, Mahmoud M. El-Merzabani

Abstract:

Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations.

Keywords: antitumor, honey, sider, tumor cell lines

Procedia PDF Downloads 537
409 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 154
408 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 104
407 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 71
406 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 399
405 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning

Authors: Mirza Waseem Abbas, Syed Danish Raza

Abstract:

For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).

Keywords: change detection, area estimation, machine learning, urbanization, remote sensing

Procedia PDF Downloads 249
404 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 136
403 Vortex Flows under Effects of Buoyant-Thermocapillary Convection

Authors: Malika Imoula, Rachid Saci, Renee Gatignol

Abstract:

A numerical investigation is carried out to analyze vortex flows in a free surface cylinder, driven by the independent rotation and differentially heated boundaries. As a basic uncontrolled isothermal flow, we consider configurations which exhibit steady axisymmetric toroidal type vortices which occur at the free surface; under given rates of the bottom disk uniform rotation and for selected aspect ratios of the enclosure. In the isothermal case, we show that sidewall differential rotation constitutes an effective kinematic means of flow control: the reverse flow regions may be suppressed under very weak co-rotation rates, while an enhancement of the vortex patterns is remarked under weak counter-rotation. However, in this latter case, high rates of counter-rotation reduce considerably the strength of the meridian flow and cause its confinement to a narrow layer on the bottom disk, while the remaining bulk flow is diffusion dominated and controlled by the sidewall rotation. The main control parameters in this case are the rotational Reynolds number, the cavity aspect ratio and the rotation rate ratio defined. Then, the study proceeded to consider the sensitivity of the vortex pattern, within the Boussinesq approximation, to a small temperature gradient set between the ambient fluid and an axial thin rod mounted on the cavity axis. Two additional parameters are introduced; namely, the Richardson number Ri and the Marangoni number Ma (or the thermocapillary Reynolds number). Results revealed that reducing the rod length induces the formation of on-axis bubbles instead of toroidal structures. Besides, the stagnation characteristics are significantly altered under the combined effects of buoyant-thermocapillary convection. Buoyancy, induced under sufficiently high Ri, was shown to predominate over the thermocapillay motion; causing the enhancement (suppression) of breakdown when the rod is warmer (cooler) than the ambient fluid. However, over small ranges of Ri, the sensitivity of the flow to surface tension gradients was clearly evidenced and results showed its full control over the occurrence and location of breakdown. In particular, detailed timewise evolution of the flow indicated that weak thermocapillary motion was sufficient to prevent the formation of toroidal patterns. These latter detach from the surface and undergo considerable size reduction while moving towards the bulk flow before vanishing. Further calculations revealed that the pattern reappears with increasing time as steady bubble type on the rod. However, in the absence of the central rod and also in the case of small rod length l, the flow evolved into steady state without any breakdown.

Keywords: buoyancy, cylinder, surface tension, toroidal vortex

Procedia PDF Downloads 358
402 Creating Complementary Bi-Modal Learning Environments: An Exploratory Study Combining Online and Classroom Techniques

Authors: Justin P. Pool, Haruyo Yoshida

Abstract:

This research focuses on the effects of creating an English as a foreign language curriculum that combines online learning and classroom teaching in a complementary manner. Through pre- and post-test results, teacher observation, and learner reflection, it will be shown that learners can benefit from online programs focusing on receptive skills if combined with a communicative classroom environment that encourages learners to develop their productive skills. Much research has lamented the fact that many modern mobile assisted language learning apps do not take advantage of the affordances of modern technology by focusing only on receptive skills rather than inviting learners to interact with one another and develop communities of practice. This research takes into account the realities of the state of such apps and focuses on how to best create a curriculum that complements apps which focus on receptive skills. The research involved 15 adult learners working for a business in Japan simultaneously engaging in 1) a commercial online English language learning application that focused on reading, listening, grammar, and vocabulary and 2) a 15-week class focused on communicative language teaching, presentation skills, and mitigation of error aversion tendencies. Participants of the study experienced large gains on a standardized test, increased motivation and willingness to communicate, and asserted that they felt more confident regarding English communication. Moreover, learners continued to study independently at higher rates after the study than they had before the onset of the program. This paper will include the details of the program, reveal the improvement in test scores, share learner reflections, and critically view current evaluation models for mobile assisted language learning applications.

Keywords: adult learners, communicative language teaching, mobile assisted language learning, motivation

Procedia PDF Downloads 134
401 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles

Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng

Abstract:

Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.

Keywords: antibiotics, biomechanical properties, bone cement, sustained release

Procedia PDF Downloads 257
400 Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission

Authors: Kazumasa Kawasaki, Isamu Tsuji, Hiroshi Gunbara

Abstract:

A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained.

Keywords: alignment error, face gear, gear design, helicopter transmission, tooth contact analysis

Procedia PDF Downloads 436
399 Examining Predictive Coding in the Hierarchy of Visual Perception in the Autism Spectrum Using Fast Periodic Visual Stimulation

Authors: Min L. Stewart, Patrick Johnston

Abstract:

Predictive coding has been proposed as a general explanatory framework for understanding the neural mechanisms of perception. As such, an underweighting of perceptual priors has been hypothesised to underpin a range of differences in inferential and sensory processing in autism spectrum disorders. However, empirical evidence to support this has not been well established. The present study uses an electroencephalography paradigm involving changes of facial identity and person category (actors etc.) to explore how levels of autistic traits (AT) affect predictive coding at multiple stages in the visual processing hierarchy. The study uses a rapid serial presentation of faces, with hierarchically structured sequences involving both periodic and aperiodic repetitions of different stimulus attributes (i.e., person identity and person category) in order to induce contextual expectations relating to these attributes. It investigates two main predictions: (1) significantly larger and late neural responses to change of expected visual sequences in high-relative to low-AT, and (2) significantly reduced neural responses to violations of contextually induced expectation in high- relative to low-AT. Preliminary frequency analysis data comparing high and low-AT show greater and later event-related-potentials (ERPs) in occipitotemporal areas and prefrontal areas in high-AT than in low-AT for periodic changes of facial identity and person category but smaller ERPs over the same areas in response to aperiodic changes of identity and category. The research advances our understanding of how abnormalities in predictive coding might underpin aberrant perceptual experience in autism spectrum. This is the first stage of a research project that will inform clinical practitioners in developing better diagnostic tests and interventions for people with autism.

Keywords: hierarchical visual processing, face processing, perceptual hierarchy, prediction error, predictive coding

Procedia PDF Downloads 111
398 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
397 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 267
396 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 74
395 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration

Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef

Abstract:

Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.

Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab

Procedia PDF Downloads 382
394 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation

Authors: Carlos Riascos, Peter Thomson

Abstract:

Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy

Procedia PDF Downloads 297
393 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 292
392 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 240
391 Examining the Missing Feedback Link in Environmental Kuznets Curve Hypothesis

Authors: Apra Sinha

Abstract:

The inverted U-shaped Environmental Kuznets curve (EKC) demonstrates(pollution-income relationship)that initially the pollution and environmental degradation surpass the level of income per capita; however this trend reverses since at the higher income levels, economic growth initiates environmental upgrading. However, what effect does increased environmental degradation has on growth is the missing feedback link which has not been addressed in the EKC hypothesis. This paper examines the missing feedback link in EKC hypothesis in Indian context by examining the casual association between fossil fuel consumption, carbon dioxide emissions and economic growth for India. Fossil fuel consumption here has been taken as a proxy of driver of economic growth. The casual association between the aforementioned variables has been analyzed using five interventions namely 1) urban development for which urbanization has been taken proxy 2) industrial development for which industrial value added has been taken proxy 3) trade liberalization for which sum of exports and imports as a share of GDP has been taken as proxy 4)financial development for which a)domestic credit to private sector and b)net foreign assets has been taken as proxies. The choice of interventions for this study has been done keeping in view the economic liberalization perspective of India. The main aim of the paper is to investigate the missing feedback link for Environmental Kuznets Curve Hypothesis before and after incorporating the intervening variables. The period of study is from 1971 to 2011 as it covers pre and post liberalization era in India. All the data has been taken from World Bank country level indicators. The Johansen and Juselius cointegration testing methodology and Error Correction based Granger causality have been applied on all the variables. The results clearly show that out of five interventions, only in two interventions the missing feedback link is being addressed. This paper can put forward significant policy implications for environment protection and sustainable development.

Keywords: environmental Kuznets curve hypothesis, fossil fuel consumption, industrialization, trade liberalization, urbanization

Procedia PDF Downloads 252
390 Recycling Service Strategy by Considering Demand-Supply Interaction

Authors: Hui-Chieh Li

Abstract:

Circular economy promotes greater resource productivity and avoids pollution through greater recycling and re-use which bring benefits for both the environment and the economy. The concept is contrast to a linear economy which is ‘take, make, dispose’ model of production. A well-design reverse logistics service strategy could enhance the willingness of recycling of the users and reduce the related logistics cost as well as carbon emissions. Moreover, the recycle brings the manufacturers most advantages as it targets components for closed-loop reuse, essentially converting materials and components from worn-out product into inputs for new ones at right time and right place. This study considers demand-supply interaction, time-dependent recycle demand, time-dependent surplus value of recycled product and constructs models on recycle service strategy for the recyclable waste collector. A crucial factor in optimizing a recycle service strategy is consumer demand. The study considers the relationships between consumer demand towards recycle and product characteristics, surplus value and user behavior. The study proposes a recycle service strategy which differs significantly from the conventional and typical uniform service strategy. Periods with considerable demand and large surplus product value suggest frequent and short service cycle. The study explores how to determine a recycle service strategy for recyclable waste collector in terms of service cycle frequency and duration and vehicle type for all service cycles by considering surplus value of recycled product, time-dependent demand, transportation economies and demand-supply interaction. The recyclable waste collector is responsible for the collection of waste product for the manufacturer. The study also examines the impacts of utilization rate on the cost and profit in the context of different sizes of vehicles. The model applies mathematical programming methods and attempts to maximize the total profit of the distributor during the study period. This study applies the binary logit model, analytical model and mathematical programming methods to the problem. The model specifically explores how to determine a recycle service strategy for the recycler by considering product surplus value, time-dependent recycle demand, transportation economies and demand-supply interaction. The model applies mathematical programming methods and attempts to minimize the total logistics cost of the recycler and maximize the recycle benefits of the manufacturer during the study period. The study relaxes the constant demand assumption and examines how service strategy affects consumer demand towards waste recycling. Results of the study not only help understanding how the user demand for recycle service and product surplus value affects the logistics cost and manufacturer’s benefits, but also provide guidance such as award bonus and carbon emission regulations for the government.

Keywords: circular economy, consumer demand, product surplus value, recycle service strategy

Procedia PDF Downloads 392
389 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 221
388 Mathematical Modelling of Drying Kinetics of Cantaloupe in a Solar Assisted Dryer

Authors: Melike Sultan Karasu Asnaz, Ayse Ozdogan Dolcek

Abstract:

Crop drying, which aims to reduce the moisture content to a certain level, is a method used to extend the shelf life and prevent it from spoiling. One of the oldest food preservation techniques is open sunor shade drying. Even though this technique is the most affordable of all drying methods, there are some drawbacks such as contamination by insects, environmental pollution, windborne dust, and direct expose to weather conditions such as wind, rain, hail. However, solar dryers that provide a hygienic and controllable environment to preserve food and extend its shelf life have been developed and used to dry agricultural products. Thus, foods can be dried quickly without being affected by weather variables, and quality products can be obtained. This research is mainly devoted to investigating the modelling of drying kinetics of cantaloupe in a forced convection solar dryer. Mathematical models for the drying process should be defined to simulate the drying behavior of the foodstuff, which will greatly contribute to the development of solar dryer designs. Thus, drying experiments were conducted and replicated five times, and various data such as temperature, relative humidity, solar irradiation, drying air speed, and weight were instantly monitored and recorded. Moisture content of sliced and pretreated cantaloupe were converted into moisture ratio and then fitted against drying time for constructing drying curves. Then, 10 quasi-theoretical and empirical drying models were applied to find the best drying curve equation according to the Levenberg-Marquardt nonlinear optimization method. The best fitted mathematical drying model was selected according to the highest coefficient of determination (R²), and the mean square of the deviations (χ^²) and root mean square error (RMSE) criterial. The best fitted model was utilized to simulate a thin layer solar drying of cantaloupe, and the simulation results were compared with the experimental data for validation purposes.

Keywords: solar dryer, mathematical modelling, drying kinetics, cantaloupe drying

Procedia PDF Downloads 126
387 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.

Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors

Procedia PDF Downloads 393