Search results for: conditions for learning and teaching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17801

Search results for: conditions for learning and teaching

15431 Expanding Business Strategy to Native American Communities Using Experiential Learning

Authors: A. J. Otjen

Abstract:

Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.

Keywords: entrepreneurship, native American economies, small businesses, unemployment

Procedia PDF Downloads 476
15430 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization

Procedia PDF Downloads 59
15429 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners

Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz

Abstract:

The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.

Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education

Procedia PDF Downloads 212
15428 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture

Authors: Nilgun Becenen

Abstract:

In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.

Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites

Procedia PDF Downloads 249
15427 The Enquiry of Food Culture Products, Practices and Perspectives: An Action Research on Teaching and Learning Food Culture from International Food Documentary Films

Authors: Tsuiping Chen

Abstract:

It has always been an international consensus that food forms a big part of any culture since the old times. However, this idea has not been globally concretized until the announcement of including food or cuisine as intangible cultural heritage by UNESCO in 2010. This announcement strengthens the value of food culture, which is getting more and more notice by every country. Although Taiwan is not one of the members of the United Nations, we cannot detach ourselves from this important global trend, especially when we have a lot of culinary students expected to join the world culinary job market. These students should have been well educated with the knowledge of world food culture to make them have the sensibility and perspectives for the occurring global food issues before joining the culinary jobs. Under the premise of the above concern, the researcher and also the instructor took on action research with one class of students in the 'Food Culture' course watching, discussing, and analyzing 12 culinary documentary films selected from one decade’s (2007-2016) of Berlin Culinary Cinema in one semester of class hours. In addition, after class, the students separated themselves into six groups and joined 12 times of one-hour-long focus group discussion on the 12 films conducted by the researcher. Furthermore, during the semester, the students submitted their reflection reports on each film to the university e-portfolio system. All the focus discussions and reflection reports were recorded and collected for further analysis by the researcher and one invited film researcher. Glaser and Strauss’ Grounded Theory (1967) constant comparison method was employed to analyze the collected data. Finally, the findings' results were audited by all participants of the research. All the participants and the researchers created 200 items of food culture products, 74 items of food culture practices, and 50 items of food culture perspectives from the action research journey through watching culinary documentaries. The journey did broaden students’ points of view on world food culture and enhance their capability on perspective construction for food culture. Four aspects of significant findings were demonstrated. First, learning food culture through watching Berlin culinary films helps students link themselves to the happening global food issues such as food security, food poverty, and food sovereignty, which direct them to rethink how people should grow, share and consume food. Second, watching different categories of documentary food films enhances students’ strong sense of responsibility for ensuring healthy lives and promoting well-being for all people in every corner of the world. Third, watching these documentary films encourages students to think if the culinary education they have accepted in this island is inclusive and the importance of quality education, which can promote lifelong learning. Last but not least, the journey of the culinary documentary film watching in the 'Food Culture' course inspires students to take pride in their profession. It is hoped the model of teaching food culture with culinary documentary films will inspire more food culture educators, researchers, and the culinary curriculum designers.

Keywords: food culture, action research, culinary documentary films, food culture products, practices, perspectives

Procedia PDF Downloads 111
15426 Effect of Problem Based Learning (PBL) Activities to Thai Undergraduate Student Teachers Attitude and Their Achievement

Authors: Thanawit Tongmai, Chatchawan Saewor

Abstract:

Learning management is very important for students’ development. To promote students’ potential, the teacher should design appropriate learning activity that brings their students potential out. Problem based learning has been using worldwide and it has presented numerous of success. This research aims to study third year students’ attitude and their achievement in scientific research course. To find the results, mix method was used to design research conduction. The researcher used PBL and reflection activity in the class. The students had to choose a topic, reviewed information, designed experimental, wrote academic report and presented their research by themselves. The researcher was only a facilitator. Reflection activity was used to progressing and consulting their research. The data was collected along with research conduction by questionnaire and test, including attitude, opinion and their achievement. The result of this study showed that 74.71% from all of students (n = 87) benefited from PBL and reflection activity, while 25.19% were just satisfied. 100% of students had a positive reflection toward PBL activity and they believed that PBL was the best pedagogy method for scientific research course. The achievements of these students were higher than the previous study (P < 0.05). The student’s learning achievement, A, B+ and B, was 48.28, 28.74 and 22.98% respectively. Therefore, it can conclude that PBL activity is appropriate for scientific research course and it can also promote student’s achievement.

Keywords: reflection, attitude, learning, achievement, PBL

Procedia PDF Downloads 281
15425 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 496
15424 Inter-Communication-Management in Cases with Disabled Children (ICDC)

Authors: Dena A. Hussain

Abstract:

The objective of this project is to design an Information and Communication Technologies (ICT) tool based on a standardized platform to assist the work-integrated learning process of caretakers of disabled children. The tool should assist the intercommunication between caretakers and improve the learning process through knowledge bridging between all involved caretakers. Some children are born with disabilities while others have special needs after an illness or accident. Special needs children often need help in their learning process and require tools and services in a different way. In some cases the child has multiple disabilities that affect several capabilities in different ways. These needs are to be transformed into different learning techniques that the staff or personal (called caretakers in this project) caring for the child needs to learn and adapt. The caretakers involved are also required to learn new learning or training techniques and utilities specialized for the child’s needs. In many cases the number of people caring for the child’s development is rather large; the parents, specialist pedagogues, teachers, therapists, psychologists, personal assistants, etc. Each group of specialists has different objectives and in some cases the merge between theses specifications is very unique. This makes the synchronization between different caretakers difficult, resulting often in low level cooperation. By better intercommunication between professions both the child’s development could be improved but also the caretakers’ methods and knowledge of each other’s work processes and their own profession. This introduces a unique work integrated learning environment for all personnel involve, merging learning and knowledge in the work environment and at the same time assist the children’s development process. Creating an iterative process generates a unique learning experience for all involved. Using a work integrated platform will help encourage and support the process of all the teams involved in the process.We believe that working with children who have special needs is a continues learning/working process that is always integrated to achieve one main goal, which is to make a better future for all children.

Keywords: information and communication technologies (ICT), work integrated learning (WIL), sustainable learning, special needs children

Procedia PDF Downloads 294
15423 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 57
15422 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 275
15421 Internal Factors that Prevent Using Assessment for Learning Strategies: A Case Study of Saudi Arabia

Authors: Khalid A. Alotaibi

Abstract:

To assess the students, there are different strategies adopted by teachers and all are important while taking their scope into consideration. Teachers may face some obstacles that prevent them using the assessment for learning. These obstacles can be internal or external. The present study has been collected from two regions (Riyadh and Hotat Bani Tamim) of Saudi Arabia, with sample size of 174 teachers. The results of the study have shown that the significant factors that can prevent teachers using assessment for learning are; the way of introducing the new form of assessment, lack of teachers' training, clarity of the regulations and size of students in the class. Additionally, other elements have also shown in this paper.

Keywords: teachers, assessment, assessment for learning, internal factors and external factors

Procedia PDF Downloads 454
15420 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation

Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen

Abstract:

Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.

Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning

Procedia PDF Downloads 74
15419 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts

Authors: Mei-Hui Liu

Abstract:

This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.

Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome

Procedia PDF Downloads 225
15418 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching

Procedia PDF Downloads 375
15417 Using Vocabulary Instructional Materials in Improving the Grade Four Students' Learning in Science

Authors: Shirly May Balais

Abstract:

This study aims to evaluate the effects of vocabulary instruction in improving the students’ learning in science. The teacher-researcher utilized the vocabulary instructional materials in enriching the science vocabulary of grade four learners. The students were also given an achievement test to determine the effects of vocabulary instructional materials. The assessment indicated that students had shown improvement in comprehension and science literacy. This also helps the students to grasp, understand, and communicate appropriate science concepts and the integration of imagery makes learning science fun. In this research, descriptive qualitative methods and observation interviews were used to describe the effects of using vocabulary instructional materials in improving the science vocabulary of grade four learners. The students’ perceptions were studied, analyzed, and interpreted qualitatively.

Keywords: instruction, learning, science, vocabulary

Procedia PDF Downloads 199
15416 Artificial Intelligence in Duolingo

Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi

Abstract:

This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.

Keywords: Duolingo, AI, personalized, customized

Procedia PDF Downloads 289
15415 The Autonomy Use of Preparatory School Students to Learn English Language

Authors: Mi̇hri̇ban Müge Aras

Abstract:

The present study aims to investigate the learner autonomy usage of prep school students. This research focuses on the prep school students' autonomy habits according to their self-regulated studies, age and duration of learning English. The research also analyzes whether prep school students have strong autonomy to learn the English language or depend on teachers and English classes only. The participants of the study consisted of 32 prep school students. The "Likert- type of questionnaire " was adopted by the researcher from the survey of Dede (2017). The scale was a one-dimensional 4-Likert type, which has the options of 1=never, 2= sometimes, 3=often, and 4=always. There are 19 questions in the questionnaire to understand the autonomy of students when they try to learn English. Descriptive statistics and OneANOVA were used to analyze the data. The results of the study showed that there is no significant correlation between their ages and their duration of learning English according to their autonomy studies for English.

Keywords: learner autonomy, self-regulated learning, independent learning, English language learning, prep school students

Procedia PDF Downloads 242
15414 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
15413 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions

Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.

Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges

Procedia PDF Downloads 442
15412 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 210
15411 Corpus Stylistics and Multidimensional Analysis for English for Specific Purposes Teaching and Assessment

Authors: Svetlana Strinyuk, Viacheslav Lanin

Abstract:

Academic English has become lingua franca for international scientific community which stimulates universities to introduce English for Specific Purposes (EAP) courses into curriculum. Teaching L2 EAP students might be fulfilled with corpus technologies and digital stylistics. A special software developed to reach the manifold task of teaching, assessing and researching academic writing of L2 students on basis of digital stylistics and multidimensional analysis was created. A set of annotations (style markers) – grammar, lexical and syntactic features most significant of academic writing was built. Contrastive comparison of two corpora “model corpus”, subject domain limited papers published by competent writers in leading academic journals, and “students’ corpus”, subject domain limited papers written by last year students allows to receive data about the features of academic writing underused or overused by L2 EAP student. Both corpora are tagged with a special software created in GATE Developer. Style markers within the framework of research might be replaced depending on the relevance and validity of the result which is achieved from research corpora. Thus, selecting relevant (high frequency) style markers and excluding less relevant, i.e. less frequent annotations, high validity of the model is achieved. Software allows to compare the data received from processing model corpus to students’ corpus and get reports which can be used in teaching and assessment. The less deviation from the model corpus students demonstrates in their writing the higher is academic writing skill acquisition. The research showed that several style markers (hedging devices) were underused by L2 EAP students whereas lexical linking devices were used excessively. A special software implemented into teaching of EAP courses serves as a successful visual aid, makes assessment more valid; it is indicative of the degree of writing skill acquisition, and provides data for further research.

Keywords: corpus technologies in EAP teaching, multidimensional analysis, GATE Developer, corpus stylistics

Procedia PDF Downloads 200
15410 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
15409 A Learning Process for Aesthetics of Language in Thai Poetry for High School Teachers

Authors: Jiraporn Adchariyaprasit

Abstract:

The aesthetics of language in Thai poetry are emerged from the combination of sounds and meanings. The appreciation of such beauty can be achieved by means of education, acquisition of knowledge, and training. This research aims to study the learning process of aesthetics of language in Thai poetry for high school teachers in Bangkok and nearby provinces. There are 10 samples selected by purposive sampling for in-depth interviews. According to the research, there are four patterns in the learning process of aesthetics of language in Thai poetry which are 1) the study of characteristics and patterns of poetry, 2) the training of poetic reading, 3) the study of social and cultural contexts of poetry’s creation, and 4) the study of other sciences related to poetry such as linguistics, traditional dance, and so on.

Keywords: aesthetics, poetry, Thai poetry, poetry learning

Procedia PDF Downloads 436
15408 Analytical Study of Educational Theories of Educational Psychology

Authors: Ajay Krishan Tiwari

Abstract:

Studies on educational psychology have demonstrated the interest of the child's psychological and cognitive environment in the quality of their school commitment. The educational psychologist works with children and adolescents to remedy these factors. The task of the educational psychologist is to liberate the child and adolescent intellectually. Its purpose is to harmonize the child with the system of learning. Psychoanalytic support requires practice in creativity, reading, math, and meditation methods. The goal of educational psychology is to restore the desire and enjoyment of learning. The educational psychologist takes into account the concerns and personality traits that hinder student learning and restores self-esteem. Educational psychologists specialize in supporting children or adolescents who have a different approach to learning. Its role is to consider the child as a whole (cognitive, affective, physical, school, family factors, etc.). It welcomes the child's way of thinking and participates in its development. It is an essential point of contact between the child and his school environment.

Keywords: educational psychology, educational theories, psychologist, cognitive environment, psychoanalytic support, enjoyment of learning

Procedia PDF Downloads 74
15407 Smartphones in the (Class) Room in Pandemic and Post-pandemic Times: a Study in an Ecological Perspective

Authors: Junia Braga, Antonio carlos Martins, Marcos Racilan

Abstract:

Drawing on the ecological approach, this paper reports a qualitative study that aims to understand how mobile technologies were integrated during the pandemic in the context of language teaching and the use of these technologies in post-pandemic times. Seventy-six teachers answered a questionnaire about their experiences. The findings show how the network with peers scaffolded this experience and played a crucial role in their appropriation of those technologies. They also suggest that this network may have contributed to the normalisation of digital technology use.

Keywords: ecological perspective, language teaching, mobile technologies, teacher education

Procedia PDF Downloads 108
15406 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer

Procedia PDF Downloads 355
15405 Online Foreign Language Learning Motivation for Tunisian Students of English

Authors: Leila Najeh

Abstract:

This study investigates the motivational factors influencing Tunisian university students learning English through online platforms. Using a mixed-methods approach, data were collected from 112 undergraduate students of English across universities in Tunisia. The study employed an online questionnaire to measure intrinsic and extrinsic motivation, incorporating the Learning Motivation Questionnaire (FFLLM-Q) developed by Gonzales in 2001 and semi-structured interviews to explore students’ perspectives on their online learning experiences. Quantitative analysis revealed a significant correlation between intrinsic motivation and interactive features such as gamification and adaptive content delivery, while extrinsic motivation was strongly linked to career aspirations and academic requirements. Qualitative findings highlighted challenges such as limited interaction with peers and teachers, technical constraints, and a lack of immediate feedback as demotivating factors. Participants expressed a preference for blended learning models, combining the flexibility of online education with the collaborative environment of traditional classrooms. This study underscores the need for tailored online learning solutions to enhance the motivational landscape for Tunisian students, emphasizing the importance of culturally relevant content, accessible platforms, and supportive learning communities. Further research is recommended to evaluate the long-term impact of these interventions on language proficiency and learner autonomy.

Keywords: motivational factor, online foreign language learnig, tunsian students of english, online learning platforms

Procedia PDF Downloads 7
15404 Utilizing Radio as a Resource Alternative for Disseminating Information to University Students in Ibadan, Nigeria: A Study of Lead City FM and Diamond FM Radio Stations

Authors: Olufemi Sunday Onabajo

Abstract:

Radio according to communication scholars is a veritable instrument of mass education. However, its full potentials in boosting higher education have not been realized because of the commercial nature of radio stations in Nigeria. The licensing of campus radio for disseminating information on university curricular is aimed at reinforcing information shared during face to face teaching. This study anchored on Agenda Setting and Technology determinism theories seeks to find out the extent to which university students in Lead City University and University of Ibadan, Nigeria have keyed-in to the philosophy of their campus radio – Lead City FM and Diamond FM in making information dissemination in their domiciled universities less cumbersome. The study employs both qualitative and quantitative methods though the use of depth interview for ten (10) academic staff and five (5) radio personnel of both radio stations; and a questionnaire addressed to 200 students of both institutions using the systematic random sampling technique. The data collected was analyzed using simple percentage and chi-square one tail test, and it was discovered that students of both universities and their radio personnel are yet to realize the potentials of campus radio as a resource alternative to effective learning, and recommends the coming together of all stakeholders to articulate the way forward.

Keywords: disseminating information, effective learning, resource alternative, utilizing radio

Procedia PDF Downloads 298
15403 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods

Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono

Abstract:

Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.

Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality

Procedia PDF Downloads 280
15402 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico

Authors: Ismene Ithai Bras-Ruiz

Abstract:

Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.

Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise

Procedia PDF Downloads 128