Search results for: tree species selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6043

Search results for: tree species selection

5833 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria

Authors: Hamisu Jibril

Abstract:

The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.

Keywords: species diversity, urban kano, dryland environment, vegetation sampling

Procedia PDF Downloads 60
5832 Supplier Selection by Considering Cost and Reliability

Authors: K. -H. Yang

Abstract:

Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.

Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection

Procedia PDF Downloads 384
5831 Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey

Authors: Sengul Uysal, Gokhan Zengin, Abdurrahman Aktumsek, Sukru Karatas

Abstract:

In this research, we determined the total sugar content, fatty acid compositions and α-amylase and α-glucosidase inhibitory activity of methanolic and water extracts of nine different fruit tree leaves. α-amylase and α-glycosidase inhibitory activity were determined by using Caraway-Somogyi–iodine/potassium iodide (IKI) and 4-nitrophenyl-α-D-glucopyranoside (PNPG) as substrate, respectively. Total sugar content of the nine different fruit tree leaves varies from 281.02 mg GE/g (glucose equivalents) to 643.96 mg GE/g. Methanolic extract from avocado leaves had the strongest in α-amylase and α-glucosidase inhibitory activity, 69.21% and 96.26 %, respectively. Fatty acid composition of nine fruit tree leaves was characterized by GC (gas chromatography) and twenty-four components were identified. Among the tested fruit tree leaves, the main component was linolenic acid (49.09%). The level of essential fatty acids are over 50% in mulberry, grape and loquat leaves. PUFAs (polyunsaturated fatty acids) were major group of fatty acids present in oils of mulberry, fig, pomegranate, grape, and loquat leaves. Therefore, these oils can be considered as a good source of polyunsaturated fatty acids. Furthermore, avocado can be regarded as a new source for diabetic therapies.

Keywords: fatty acid compositions, total sugar contents, α-amylase, α-glucosidase, fruit tree leaves, Turkey

Procedia PDF Downloads 486
5830 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: decision tree modeling, forecasting, humanitarian relief, emergency supply chain

Procedia PDF Downloads 483
5829 Positive Interactions among Plants in Pinegroves over Quarzitic Sands

Authors: Enrique González Pendás, Vidal Pérez Hernández, Jorge Ferro Díaz, Nelson Careaga Pendás

Abstract:

The investigation is carried out on the Protected Area of San Ubaldo, toward the interior of an open pinegrove with palm trees in a dry plainness of quar zitic sands, belonging to the Floristic Managed Reservation San Ubaldo-Sabanalamar, Guane, Pinar del Río, Cuba. This area is characterized by drastic seasonal variations, high temperatures and water evaporation, strong solar radiation, with sandy soils of almost pure quartz, which are very acid and poor in nutrients. The objective of the present work is to determine evidence of facilitation and its relationship with the structure and composition of plant communities in these peculiar ecosystems. For this study six lineal parallel transepts of 100 m are traced, in those, a general recording of the flora is carried out. To establish which plants act as nurses, is taken into account a height over 1 meter, canopy over 1.5 meter and the occurrence of several species under it. Covering was recorded using the line intercept method; the medium values of species richness for the taxa under nurses is compared with those that are located in open spaces among them. Then, it is determined which plants are better recruiter of other species (better nurses). An experiment is made to measure and compare some parameters in pine seedlings under the canopy of the Byrsonima crassifolia (L.) Kunth. and in open spaces, also the number of individuals is counted by species to calculate the frequency and total abundance in the study area. As a result, it is offered an up-to-date floristic list, a phylogenetic tree of the plant community showing a high phylodiversity, it is proven that the medium values of species richness and abundance of species under the nurses, is significantly superior to those occurring in open spaces. Furthermore, by means of phylogenetic trees it is shown that the species which cohabit under the nurses are not phylogenetically related. The former results are cited evidences of facilitation among plants, as well as it is one more time shown the importance of the nurse effect in preserving plant diversity on extreme environments.

Keywords: facilitation, nurse plants, positive interactions, quarzitic sands

Procedia PDF Downloads 341
5828 Partner Selection for Horizontal Logistic Cooperation

Authors: Mario Winkelhaus, Franz Vallée

Abstract:

Many companies see horizontal cooperation as a promising possibility to increase their efficiency in outbound logistics. The selection of suitable partners has particular importance in the formation of horizontal cooperation. Up until now, literature mainly focused on general applicable methods for the identification of cooperation partners without a closer examination of the specific area where the cooperation takes place. Thus, specific criteria as a basis for the partner selection in the field of logistics cooperation are missing. To close this scientific gap, an explorative research approach is used to answer the open question of the article. To collect the needed criteria, a qualitative experiment with 20 participants from 16 companies was done. Within this workshop, general criteria, as well as sector-specific requirements, have been identified which were integrated in a partner selection model.

Keywords: horizontal cooperation, logistics cooperation partnering criteria, partner selection

Procedia PDF Downloads 426
5827 Ants of the Genus Trichomyrmex Mayr, 1865 (Hymenoptera: Formicidae) in the Arabian Peninsula, with Description of Two New Species

Authors: Mostafa R. Sharaf, Shehzad Salman, Hathal M. Al Dhafer, Shahid A. Akbar, Abdulrahman S. Aldawood

Abstract:

The ant genus Trichomyrmex Mayr is revised for the Arabian Peninsula based on the worker caste. Nine species are recognized and descriptions of two new species, T. almosayari sp. n. and T. shakeri sp. n. from Riyadh Province, the Kingdom of Saudi Arabia (KSA) are given. A key to species and diagnostic characters of the treated species are presented. New country records are presented, T. abyssinicus (Forel) for the KSA and T. destructor (Jerdon) and T. mayri (Forel) for the State of Qatar. New distribution records for T. destructor (Jerdon) and T. mayri (Forel) in the KSA are provided. Regional and world distributions, and distribution maps for the treated species are included. Ecological and biological data are given where known.

Keywords: ants, Trichomyrmex, Arabian Peninsula, T. almosayari, T. shakeri

Procedia PDF Downloads 347
5826 Evaluation of Genetic Diversity Through RAPD Markers Among Melia azedarach L (Chinabery)

Authors: Nadir Ali Rind, Özlem Aksoy, Muhammad Umar Dahot, Salih Dikilitaş, Muhammad Rafiq, Burçak Tütünoğlu

Abstract:

Melia azedarach L. is freshly fruited small to medium sized tree native to China and North western India. It is growing in Pakistan and Turkey in various areas facing great environmental changes to maintain its survival. The species is valued for its high quality wood, medicinal, ornamental and shade purposes. The present work was aimed to estimate the genetic variation among the populations of Melia azedarach L. leaf samples that were collected from five different locations of Turkey and three different areas of Pakistan. These populations were chosen on the random bases by applying RAPD primers in order to construct a dendogram using UPGMA method to show genetic diversity. After that appropriate conservation strategies were suggested. 14 primers producing polymorphic and monomorphic bands were analyzed. Genetic distances were calculated for all the species studied by RAPD-PCR methods. According to the results the lowest genetic identity values and the highest genetic polymorphic values were determined. It is observed that there was a clear split among populations from different areas in Turkey and Pakistan. These differences may be due to eco-geographical association with genetic variation and should be conserved to retain the genetic variation of the species.

Keywords: melia azedarach L., genetic diversity, conservation, RAPD-PCR, medicinal plant

Procedia PDF Downloads 465
5825 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

Authors: S. A. Kondratyev, O. I. Ibragimova

Abstract:

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Keywords: criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure

Procedia PDF Downloads 222
5824 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 152
5823 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models

Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling

Abstract:

Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.

Keywords: supplier selection, automotive supply chains, ANN, GEP

Procedia PDF Downloads 631
5822 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 123
5821 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes

Authors: Marie Guittonny-LarchevêQue

Abstract:

In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.

Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies

Procedia PDF Downloads 250
5820 Efficacy of Different Pest Control Strategies against Citrus Rind Borer (Prays Eendolemma Diakonoff) Infesting Pummelo (Citrus maxima)

Authors: Larry V. Aceres, Jesryl B. Paulite, Emelie M. Pelicano, J. A. Esteban, Mamangun

Abstract:

Citrus rind borer still the most important pest infesting pummelo in the Philippines particularly in the Davao region. Hence, management of the pest is very important for successful pummelo production. This study was conducted to assess the effectiveness of the different control strategies against citrus rind borer; to determine the best treatment in controlling citrus rind borer; and to calculate the profitability of the various treatments in pummelo production. The experiment was laid-out in Completely Randomized Design (CRD) with five treatments replicated three times. The treatments were: T1- curry tree leaf leachate, T2- neem tree leaf leachate, T3- bagging with an ordinary net, T4- treated check (chlorpyrifos & betacyflutrin) and T5- untreated check. Data were analyzed using the Analysis of Variance and the differences among treatment means were computed using the Tukey’s Honest Significant Difference. The results of the study revealed that the curry tree leaf leachate and bagging treatments provide significant protection to the pummelo fruits which is comparable with the treated check (chlorpyrifos & betacyflutrin). Neem tree leaf leachate is not effective in controlling citrus rind borer which is comparable with the untreated check. In cost and return analysis, the most economical and effective is the bagging treatment using ordinary net.

Keywords: curry tree, neem tree, bagging, citrus rind borer

Procedia PDF Downloads 324
5819 Habitat Use by Persian Gazelle (Gazella subgutturosa) in Bydoye Protected Area, Iran

Authors: S. Aghanajafizadeh, M. Poursina

Abstract:

We studied the selection of winter habitat by Persian Gazelle (Gazella subguttrosa) in Bydoyeh protected area. Habitat variables such as plant species number, vegetation percent, distance to the nearest water sources and plant patch of present sites were compared with randomly selected non- used sites. The results showed that the most important factors influencing habitat selection were number and vegetation percent of Artemisia sieberi. Vegetation percent of plants. vegetation percent and number of Artemisia sieberi were significantly higher compared with the control area.

Keywords: Persian gazelle, habitat use, Bydoyeh protected area, Kerman, Iran

Procedia PDF Downloads 381
5818 Adaptive Response of Plants to Environmental Stress: Natural Oil Seepage; The Living Laboratory in Tramutola, Basilicata Region

Authors: Maria Francesca Scannone, Martina Bochicchio

Abstract:

One of the major environmental problems today is hydrocarbon contamination. The promising sustainable technologies for the treatment of these contaminated sites involves the use of biological organisms. In Agri Valley (Basilicata Region) there is a living laboratory (natural oil seeps) where the selective pressure has enriched the environmental matrices with microorganisms, fungi and plant species able to use the hydrocarbons as a source of metabolic energy, to degrade or tolerate hydrocarbons. Observers visiting this area are fascinated by its unspoiled nature, and the condition of the ecosystem does not appear to has been damaged. The amazing resiliency observed in Tramutola site is of key importance to try to bring green remediation technologies, but no research has been done to identify high-performing native species. The aim of this research was to study how natural processes affect the fate of released oil or how individual species or communities of plants and animals are capable of dealing with the burden of otherwise toxic chemicals. The survey of vegetation was carried out, more than 60 species have been identified and divided into tree, shrub and herb layer. Plant data sheets have been completed only for the species that showed the most appropriate properties for phytoremediation. In general, members of the Salicales, Cyperales, Poales, Fagales, Cornales, Equisetales orders were the most commonly identified orders. They are pioneer plants with high adaptive capacity and vegetative propagation. The literature review has highlighted the existence of rhizosphere effect and a green liver model on selected plants. The study provides significant information on the environmental stress adaptation processes of many indigenous plants that are living and growing on a natural leak of crude oil and gas that migrates up through subsurface.

Keywords: green liver, hydrocarbon degradation, oil seeps, phytoremediation

Procedia PDF Downloads 175
5817 Bioinformatics Analysis of DGAT1 Gene in Domestic Ruminnants

Authors: Sirous Eydivandi

Abstract:

Diacylglycerol-O-acyltransferase (DGAT1) gene encodes diacylglycerol transferase enzyme that plays an important role in glycerol lipid metabolism. DGAT1 is considered to be the key enzyme in controlling the synthesis of triglycerides in adipocytes. This enzyme catalyzes the final step of triglyceride synthesis (transform triacylglycerol (DAG) into triacylglycerol (TAG). A total of 20 DGAT1 gene sequences and corresponding amino acids belonging to 4 species include cattle, goats, sheep and yaks were analyzed, and the differentiation within and among the species was also studied. The length of the DGAT1 gene varies greatly, from 1527 to 1785 bp, due to deletion, insertion, and stop codon mutation resulting in elongation. Observed genetic diversity was higher among species than within species, and Goat had more polymorphisms than any other species. Novel amino acid variation sites were detected within several species which might be used to illustrate the functional variation. Differentiation of the DGAT1 gene was obvious among species, and the clustering result was consistent with the taxonomy in the National Center for Biotechnology Information.

Keywords: DGAT1gene, bioinformatic, ruminnants, biotechnology information

Procedia PDF Downloads 491
5816 The Potential Effect of Sexual Selection on the Distal Genitalia Variability of the Simultaneously Hermaphroditic Land Snail Helix aperta in Bejaia/Kabylia/Algeria

Authors: Benbellil-Tafoughalt Saida, Tababouchet Meriem

Abstract:

Sexual selection is the most supported explanation for genital extravagance occurring in animals. In promiscuous species, population density, as well as climate conditions, may act on the sperm competition intensity, one of the most important mechanism of post-copulatory sexual selection. The present study is empirical testing of sexual selection's potential role on genitalia variation in the simultanuously hermaphroditic land snail Helixaperta (Pulmonata, Stylommatophora). The purpose was to detect the patterns as well as the origin of the distal genitalia variability and especially to test the potential effect of sexual selection. The study was performed on four populations, H. aperta, different in habitat humidity regimes and presenting variable densities, which were mostly low. The organs of interest were those involved in spermatophore production, reception, and manipulation. We examined whether the evolution of those organs is connected to sperm competition intensity which is traduced by both population density and microclimate humidity. We also tested the hypothesis that those organs evolve in response to shell size. The results revealed remarkable differences in both snails’ size and organs lengths between populations. In most cases, the length of genitalia correlated positively to snails’ body size. Interestingly, snails from the more humid microclimate presented the highest mean weight and shell dimensions comparing to those from the less humid microclimate. However, we failed to establish any relation between snail densities and any of the measured genitalia traits.

Keywords: fertilization pouch, helix aperta, land snails, reproduction, sperm storage, spermatheca

Procedia PDF Downloads 189
5815 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 211
5814 Prey Selection of the Corallivorous Gastropod Drupella cornus in Jeddah Coast, Saudi Arabia

Authors: Gaafar Omer BaOmer, Abdulmohsin A. Al-Sofyani, Hassan A. Ramadan

Abstract:

Drupella is found on coral reefs throughout the tropical and subtropical shallow waters of the Indo-Pacific region. Drupella is muricid gastropod, obligate corallivorous and their population outbreak can cause significant coral mortality. Belt transect surveys were conducted at two sites (Bohairat and Baydah) in Jeddah coast, Saudi Arabia to assess prey preferences for D. cornus with respect to prey availability through resource selection ratios. Results revealed that there are different levels of prey preferences at the different age stages and at the different sites. Acropora species with a caespitose, corymbose and digitate growth forms were preferred prey for recruits and juveniles of Drupella cornus, whereas Acropora variolosa was avoided by D. cornus because of its arborescent colony growth form. Pocillopora, Stylophora, and Millipora were occupied by Drupella cornus less than expected, whereas massive corals genus Porites were avoided. High densities of D. cornus were observed on two fragments of Pocillopora damicornis which may because of the absence of coral guard crabs genus Trapezia. Mean densities of D. cornus per colony for each species showed significant differentiation between the two study sites. Low availability of Acropora colonies in Bayadah patch reef caused high mean density of D. cornus per colony to compare to that in Bohairat, whereas higher mean density of D. cornus per colony of Pocillopora in Bohairat than that in Bayadah may because of most of occupied Pocillopora colonies by D. cornus were physical broken by anchoring compare to those colonies in Bayadah. The results indicated that prey preferences seem to depend on both coral genus and colony shape, while mean densities of D. cornus depend on availability and status of coral colonies.

Keywords: prey availability, resource selection, Drupella cornus, Jeddah, Saudi Arabia

Procedia PDF Downloads 148
5813 Traditional Knowledge on Living Fences in Andean Linear Plantations

Authors: German Marino Rivera

Abstract:

Linear plantations are a common practice in several countries as living fences (LF) delimiting agroecosystems. They are composed of multipurpose perennial woods that provide assets, protection, and supply services. However, not much is known in some traditional communities like the Andean region, including the species composition and the social and ecological benefits of the species used. In the High Andean Colombian region, LF seems to be very typical and diverse. This study aimed to analyze the traditional knowledge about LF systems, including the species composition and their uses in rural communities of Alto Casanare, Colombia. Field measurements, interviews, guided tours, and species sampling were carried out in order to describe traditional practices and the species used in the LF systems. The use values were estimated through the Coefficient of Importance of the Species (CIS). A total of 26 farms engage in LF practices, covering an area of 9283.3 m. In these systems, 30 species were identified, belonging to 23 families. Alnus acuminata was the specie with the highest CIS. The species presented multipurpose uses for both economic and ecological purposes. The transmission of knowledge (TEK) about the used species is very heterogeneous among the farmers. Many species used were not documented, with reciprocal gaps between the literature and traditional species uses. Exchanging this information would increase the species' versatility, the socioeconomic aspects of these communities, increases the agrobiodiversity and ecological services provided by LF. The description of the TEK on LF provides a better understanding of the relationship of these communities with the natural resources, pointing out creative approaches to achieve local environment conservation in these agroecosystems and promoting socioeconomic development.

Keywords: ethnobotany, living fences, traditional communities, agroecology

Procedia PDF Downloads 93
5812 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 328
5811 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 530
5810 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 130
5809 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 532
5808 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 76
5807 Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk

Authors: Ahmed Zahran

Abstract:

Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy.

Keywords: bifidobacteria physiological properties, soy milk, goat milk, attachment epithelial cells, columnar tissues, probiotic food

Procedia PDF Downloads 84
5806 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 68
5805 Patterns in Fish Diversity and Abundance of an Abandoned Gold Mine Reservoirs

Authors: O. E. Obayemi, M. A. Ayoade, O. O. Komolafe

Abstract:

Fish survey was carried out for an annual cycle covering both rainy and dry seasons using cast nets, gill nets and traps at two different reservoirs. The objective was to examined the fish assemblages of the reservoirs and provide more additional information on the reservoir. The fish species in the reservoirs comprised of twelve species of six families. The results of the study also showed that five species of fish were caught in reservoir five while ten fish species were captured in reservoir six. Species such as Malapterurus electricus, Ctenopoma kingsleyae, Mormyrus rume, Parachanna obscura, Sarotherodon galilaeus, Tilapia mariae, C. guntheri, Clarias macromystax, Coptodon zilii and Clarias gariepinus were caught during the sampling period. There was a significant difference (p=0.014, t = 1.711) in the abundance of fish species in the two reservoirs. Seasonally, reservoirs five (p=0.221, t = 1.859) and six (p=0.453, t = 1.734) showed there was no significant difference in their fish populations. Also, despite being impacted with gold mining the diversity indices were high when compared to less disturbed waterbodies. The study concluded that the environments recorded low abundant fish species which suggests the influence of mining on the abundance and diversity of fish species.

Keywords: Igun, fish, Shannon-Wiener Index, Simpson index, Pielou index

Procedia PDF Downloads 107
5804 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: biomarker discovery, cancer, feature selection, mass spectrometry

Procedia PDF Downloads 338