Search results for: threshold detecting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1542

Search results for: threshold detecting

1332 Institutional Quality and Tax Compliance: A Cross-Country Regression Evidence

Authors: Debi Konukcu Onal, Tarkan Cavusoglu

Abstract:

In modern societies, the costs of public goods and services are shared through taxes paid by citizens. However, taxation has always been a frictional issue, as tax obligations are perceived to be a financial burden for taxpayers rather than being merit that fulfills the redistribution, regulation and stabilization functions of the welfare state. The tax compliance literature evolves into discussing why people still pay taxes in systems with low costs of legal enforcement. Related empirical and theoretical works show that a wide range of socially oriented behavioral factors can stimulate voluntary compliance and subversive effects as well. These behavioral motivations are argued to be driven by self-enforcing rules of informal institutions, either independently or through interactions with legal orders set by formal institutions. The main focus of this study is to investigate empirically whether institutional particularities have a significant role in explaining the cross-country differences in the tax noncompliance levels. A part of the controversy about the driving forces behind tax noncompliance may be attributed to the lack of empirical evidence. Thus, this study aims to fill this gap through regression estimates, which help to trace the link between institutional quality and noncompliance on a cross-country basis. Tax evasion estimates of Buehn and Schneider is used as the proxy measure for the tax noncompliance levels. Institutional quality is quantified by three different indicators (percentile ranks of Worldwide Governance Indicators, ratings of the International Country Risk Guide, and the country ratings of the Freedom in the World). Robust Least Squares and Threshold Regression estimates based on the sample of the Organization for Economic Co-operation and Development (OECD) countries imply that tax compliance increases with institutional quality. Moreover, a threshold-based asymmetry is detected in the effect of institutional quality on tax noncompliance. That is, the negative effects of tax burdens on compliance are found to be more pronounced in countries with institutional quality below a certain threshold. These findings are robust to all alternative indicators of institutional quality, supporting the significant interaction of societal values with the individual taxpayer decisions.

Keywords: institutional quality, OECD economies, tax compliance, tax evasion

Procedia PDF Downloads 130
1331 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 64
1330 Numerical Study Pile Installation Disturbance Zone Effects on Excess Pore Pressure Dissipation

Authors: Kang Liu, Meng Liu, Meng-Long Wu, Da-Chang Yue, Hong-Yi Pan

Abstract:

The soil setup is an important factor affecting pile bearing capacity; there are many factors that influence it, all of which are closely related to pile construction disturbances. During pile installation in soil, a significant amount of excess pore pressure is generated, creating disturbance zones around the pile. The dissipation rate of excess pore pressure is an important factor influencing the pile setup. The paper aims to examine how alterations in parameters within disturbance zones affect the dissipation of excess pore pressure. An axisymmetric FE model is used to simulate pile installation in clay, subsequently consolidation using Plaxis 3D. The influence of disturbed zone on setup is verified, by comparing the parametric studies in uniform field and non-uniform field. Three types of consolidation are employed: consolidation in three directions, vertical consolidation, horizontal consolidation. The results of the parametric study show that the permeability coefficient decreases, soil stiffness decreases, and reference pressure increases in the disturbance zone, resulting in an increase in the dissipation time of excess pore pressure and exhibiting a noticeable threshold phenomenon, which has been commonly overlooked in previous literature. The research in this paper suggests that significant thresholds occur when the coefficient of permeability decreases to half of the original site's value for three-directional and horizontal consolidation within the disturbed zone. Similarly, the threshold for vertical consolidation is observed when the coefficient of permeability decreases to one-fourth of the original site's value. Especially in pile setup research, consolidation is assumed to be horizontal; the study findings suggest that horizontal consolidation has experienced notable alterations as a result of the presence of disturbed zones. Furthermore, the selection of pile installation methods proves to be critical. A nonlinearity excess pore pressure formula is proposed based on cavity expansion theory, which includes the distribution of soil profile modulus with depth.

Keywords: pile setup, threshold value effect, installation effects, uniform field, non-uniform field

Procedia PDF Downloads 45
1329 Genome-Wide Isoform Specific KDM5A/JARID1A/RBP2 Location Analysis Reveals Contribution of Chromatin-Interacting PHD Domain in Protein Recruitment to Binding Sites

Authors: Abul B. M. M. K. Islam, Nuria Lopez-Bigas, Elizaveta V. Benevolenskaya

Abstract:

RBP2 has shown to be important for cell differentiation control through epigenetic mechanism. The main aim of the present study is genome-wide location analysis of human RBP2 isoforms that differ in a histone-binding domain by ChIPseq. It is conceivable that the larger isoform (LI) of RBP2, which contains a specific H3K4me3 interacting domain, differs from the smaller isoform (SI) in genomic location, may account for the observed diversity in RBP2 function. To distinguish the two RBP2 isoforms, we used the fact that the SI lacks the C-terminal PHD domain and hence used the antibodies detecting both RBP2 isoforms (AI) through a common central domain, and the antibodies detecting only LI but not SI, through a C-terminal PHD domain. Overall our analysis suggests that RBP2 occupies about 77 nucleotides and binds GC rich motifs of active genes, does not bind to centromere, telomere, or enhancer regions, and binding sites are conserved compare to random. A striking difference between the only-SI and only-LI is that a large number of only-SI peaks are located in CpG islands and close to TSS compared to only-LI peaks. Enrichment analysis of the related genes indicates that several oncogenic pathways and metabolic pathways/processes are significantly enriched among only-SI/AI targets, but not LI/only-LI peak’s targets.

Keywords: bioinformatics, cancer, ChIP-seq, KDM5A

Procedia PDF Downloads 305
1328 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 52
1327 Clinical Phenotypic Characterization of the SLC26A4 Mutation in Pendred Syndrome/Nonsyndromic Enlarged Vestibular Aqueduct

Authors: Rong Wang

Abstract:

Objective: The aim is to summarize the Solute Carrier Family 26 Member 4 (SLC26A4) mutations and clinical phenotypic characteristics of patients with Pendred syndrome/nonsyndromic enlarged vestibular aqueduct (PS/NSEVA). Design: A retrospective cohort study for the Chinese population was performed to analyze the hearing test results of 406 patients with PS/NSEVA who had a SLC26A4 mutation and the relationship between inner ear imaging and audiology. Results: There was a significant difference in the mean hearing threshold in patients with biallelic mutations (M2), monoallelic mutations (M1), and nonallelic mutations (M0) and between patients with isolated vestibular aqueduct enlargement (IEVA) and patients with IEVA combined with Mondini malformation. There was no significant difference between patients with different gene mutation types or different sexes or between the width of the vestibular aqueduct (VA) and the mean hearing threshold. The degree of hearing loss was linearly correlated with age. Conclusions: We propose that the presence or absence of SLC26A4 mutation, whether combined with Mondini malformation and patient age, are essential factors affecting the degree of hearing loss in the Chinese population. However, the number and type of mutations, degree of VA expansion, and sex of the patients did not affect the clinical audiological phenotype.

Keywords: hearing loss, Pendred syndrome/nonsyndromic vestibular enlargement of aqueduct, radiologic, SLC26A4

Procedia PDF Downloads 20
1326 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 146
1325 High Precision 65nm CMOS Rectifier for Energy Harvesting using Threshold Voltage Minimization in Telemedicine Embedded System

Authors: Hafez Fouad

Abstract:

Telemedicine applications have very low voltage which required High Precision Rectifier Design with high Sensitivity to operate at minimum input Voltage. In this work, we targeted 0.2V input voltage using 65 nm CMOS rectifier for Energy Harvesting Telemedicine application. The proposed rectifier which designed at 2.4GHz using two-stage structure found to perform in a better case where minimum operation voltage is lower than previous published paper and the rectifier can work at a wide range of low input voltage amplitude. The Performance Summary of Full-wave fully gate cross-coupled rectifiers (FWFR) CMOS Rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2 V are 490.9 mV and 1.997 V, maximum VCE = 99.85 % and maximum PCE = 46.86 %. The Performance Summary of Differential drive CMOS rectifier with external bootstrapping circuit rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2V are 265.5 mV (0.265V) and 1.467 V respectively, maximum VCE = 93.9 % and maximum PCE= 15.8 %.

Keywords: energy harvesting, embedded system, IoT telemedicine system, threshold voltage minimization, differential drive cmos rectifier, full-wave fully gate cross-coupled rectifiers CMOS rectifier

Procedia PDF Downloads 158
1324 EWMA and MEWMA Control Charts for Monitoring Mean and Variance in Industrial Processes

Authors: L. A. Toro, N. Prieto, J. J. Vargas

Abstract:

There are many control charts for monitoring mean and variance. Among these, the X y R, X y S, S2 Hotteling and Shewhart control charts, for mentioning some, are widely used for monitoring mean a variance in industrial processes. In particular, the Shewhart charts are based on the information about the process contained in the current observation only and ignore any information given by the entire sequence of points. Moreover, that the Shewhart chart is a control chart without memory. Consequently, Shewhart control charts are found to be less sensitive in detecting smaller shifts, particularly smaller than 1.5 times of the standard deviation. These kind of small shifts are important in many industrial applications. In this study and effective alternative to Shewhart control chart was implemented. In case of univariate process an Exponentially Moving Average (EWMA) control chart was developed and Multivariate Exponentially Moving Average (MEWMA) control chart in case of multivariate process. Both of these charts were based on memory and perform better that Shewhart chart while detecting smaller shifts. In these charts, information the past sample is cumulated up the current sample and then the decision about the process control is taken. The mentioned characteristic of EWMA and MEWMA charts, are of the paramount importance when it is necessary to control industrial process, because it is possible to correct or predict problems in the processes before they come to a dangerous limit.

Keywords: control charts, multivariate exponentially moving average (MEWMA), exponentially moving average (EWMA), industrial control process

Procedia PDF Downloads 351
1323 Determinants of Probability Weighting and Probability Neglect: An Experimental Study of the Role of Emotions, Risk Perception, and Personality in Flood Insurance Demand

Authors: Peter J. Robinson, W. J. Wouter Botzen

Abstract:

Individuals often over-weight low probabilities and under-weight moderate to high probabilities, however very low probabilities are either significantly over-weighted or neglected. Little is known about factors affecting probability weighting in Prospect Theory related to emotions specific to risk (anticipatory and anticipated emotions), the threshold of concern, as well as personality traits like locus of control. This study provides these insights by examining factors that influence probability weighting in the context of flood insurance demand in an economic experiment. In particular, we focus on determinants of flood probability neglect to provide recommendations for improved risk management. In addition, results obtained using real incentives and no performance-based payments are compared in the experiment with high experimental outcomes. Based on data collected from 1’041 Dutch homeowners, we find that: flood probability neglect is related to anticipated regret, worry and the threshold of concern. Moreover, locus of control and regret affect probabilistic pessimism. Nevertheless, we do not observe strong evidence that incentives influence flood probability neglect nor probability weighting. The results show that low, moderate and high flood probabilities are under-weighted, which is related to framing in the flooding context and the degree of realism respondents attach to high probability property damages. We suggest several policies to overcome psychological factors related to under-weighting flood probabilities to improve flood preparations. These include policies that promote better risk communication to enhance insurance decisions for individuals with a high threshold of concern, and education and information provision to change the behaviour of internal locus of control types as well as people who see insurance as an investment. Multi-year flood insurance may also prevent short-sighted behaviour of people who have a tendency to regret paying for insurance. Moreover, bundling low-probability/high-impact risks with more immediate risks may achieve an overall covered risk which is less likely to be judged as falling below thresholds of concern. These measures could aid the development of a flood insurance market in the Netherlands for which we find to be demand.

Keywords: flood insurance demand, prospect theory, risk perceptions, risk preferences

Procedia PDF Downloads 273
1322 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 234
1321 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 591
1320 Production of Camel Nanobodies against of Anti-Morphine-3-Glucuronide for the Development of a Biosensor for Detecting Illicit Drug

Authors: Shirin Jalili, Sadegh Hasannia, Hadi Shirzad, Afshin Khara

Abstract:

Morphine is one of the most medicinally important analgesics and narcotics. Structurally, it is classified as an alkaloid because of the presence of nitrogen. Its structure is similar to that of codeine, thebaine, and heroin. An immunoassay to accurately discriminate between these analogous alkaloids would be highly beneficial. A key factor for such an assay is specificity with high sensitivity, which is totally dependent on the antibody employed. However, most antibodies against haptens are polyclonal serum antibodies that exhibit significant cross-reactivities with closely related compounds. The camel-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity, possessing unique properties compared to other conventional antibodies. In this study, a library containing the VHH genes of a camel immunized with with morphine conjugated BSA following phage display technology was generated. By screening the camel-derived variable region of the heavy chain cDNA phage display library with the ability to bind the desired hapten, we obtained some nanobodies that recognize this hapten. Phage display expression of the Nbs from this library and pannings against this hapten resulted in a clear enrichment of four distinct Nb-displaying phages with specificity for morphine that could be a potential target site for the development of new strategies for the development of a biosensor for detecting illicit drug.

Keywords: phage display, nanobody, Morphine-3, glucuronide, ELISA, biosensor

Procedia PDF Downloads 425
1319 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle

Authors: Bivek Bhusal, Ana Legrand

Abstract:

Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.

Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans

Procedia PDF Downloads 58
1318 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 404
1317 Value of Willingness to Pay for a Quality-Adjusted Life Years Gained in Iran; A Modified Chained-Approach

Authors: Seyedeh-Fariba Jahanbin, Hasan Yusefzadeh, Bahram Nabilou, Cyrus Alinia, Cyrus Alinia

Abstract:

Background: Due to the lack of a constant Willingness to Pay per one additional Quality Adjusted Life Years gained based on the preferences of Iran’s general public, the cost-efectiveness of health system interventions is unclear and making it challenging to apply economic evaluation to health resources priority setting. Methods: We have measured this cost-efectiveness threshold with the participation of 2854 individuals from fve provinces, each representing an income quintile, using a modifed Time Trade-Of-based Chained-Approach. In this online-based empirical survey, to extract the health utility value, participants were randomly assigned to one of two green (21121) and yellow (22222) health scenarios designed based on the earlier validated EQ-5D-3L questionnaire. Results: Across the two health state versions, mean values for one QALY gain (rounded) ranged from $6740-$7400 and $6480-$7120, respectively, for aggregate and trimmed models, which are equivalent to 1.35-1.18 times of the GDP per capita. Log-linear Multivariate OLS regression analysis confrmed that respondents were more likely to pay if their income, disutility, and education level were higher than their counterparts. Conclusions: In the health system of Iran, any intervention that is with the incremental cost-efectiveness ratio, equal to and less than 7402.12 USD, will be considered cost-efective.

Keywords: willingness to Pay, QALY, chained-approach, cost-efectiveness threshold, Iran

Procedia PDF Downloads 85
1316 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network

Authors: Yinggang Guo, Zongchun Li

Abstract:

In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.

Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum

Procedia PDF Downloads 191
1315 Current Practices of Permitted Daily Exposure (PDE) Calculation and Selection

Authors: Annie Ramanbhai Mecwan

Abstract:

Cleaning validation in a pharmaceutical manufacturing facility is documented evidence that a cleaning process has effectively removed contaminants, residues from previous drug products and cleaning agents below a pre-defined threshold from the reusable tools and parts of equipment. In shared manufacturing facilities more than one drug product is prepared. After cleaning of reusable tools and parts of equipment after one drug product manufacturing, there are chances that some residues of drug substance from previously manufactured drug products may be retained on the equipment and can carried forward to the next drug product and thus cause cross-contamination. Health-based limits through the derivation of a safe threshold value called permitted daily exposure (PDE) for the residues of drug substances should be employed to identify the risks posed at these manufacturing facilities. The PDE represents a substance-specific dose that is unlikely to cause an adverse effect if an individual is exposed to or below this dose every day for a lifetime. There are different practices to calculate PDE. Data for all APIs in the public domain are considered to calculate PDE value though, company to company may vary the final PDE value based on different toxicologist’s perspective or their subjective evaluation. Hence, Regulatory agencies should take responsibility for publishing PDE values for all APIs as it is done for elemental PDEs. This will harmonize the PDE values all over the world and prevent the unnecessary load on manufacturers for cleaning validation

Keywords: active pharmaceutical ingredient, good manufacturing practice, NOAEL, no observed adverse effect level, permitted daily exposure

Procedia PDF Downloads 88
1314 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 335
1313 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF

Authors: Sezen Gurdag, Ayse Ebru Akin

Abstract:

There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.

Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive

Procedia PDF Downloads 157
1312 Application of Biosensors in Forensic Analysis

Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.

Keywords: biosensors, forensic analysis, biological fluid, crime detection

Procedia PDF Downloads 1115
1311 A Deep Learning Approach to Online Social Network Account Compromisation

Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang

Abstract:

The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.

Keywords: computer security, network security, online social network, account compromisation

Procedia PDF Downloads 115
1310 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
1309 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 348
1308 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 245
1307 Profile of Cross-Reactivity Allergens Highlighted by Multiplex Technology “Alex Microchip Technique” in the Diagnosis of Type I Hypersensitivity

Authors: Gadiri Sabiha

Abstract:

Introduction: Current allergy diagnostic tools using Multiplex technology have made it possible to increase the efficiency of the search for specific IgE. This opportunity is provided by the newly developed “Alex Biochip”, consisting of a panel of 282 allergens in native and molecular form, a CCD inhibitor, and the potential for detecting cross-reactive allergens. We evaluated the performance of this technology in detecting cross-reactivity in previously explored patients. Material/Method: The sera of 39 patients presenting sensitization and polysensitization profiles were explored. The search for specific IgE is carried out by the Alex ® IgE Biochip, and the results are analyzed by nature and by molecular family of allergens using specific software. Results/Discussion: The analysis gave a particular profile of cross-reactivity allergens: 33% for the Ole e1 family, 31% for NPC2, 26% for storage proteins, 20% for Tropomyosin, 10% for LTPs, 10% for Arginine Kinase and 10% for Uteroglobin CCDs were absent in all patients. The “Ole e1” allergen is responsible for a pollen-pollen cross allergy. The storage proteins found and LTP are not species-specific, causing cross-pollen-food allergy. The nDer p2 of the NPC2 family is responsible for cross-reactivity between mite species. Conclusion: The cross-reactivities responsible for mixed syndromes at diagnosis in our patients were dominated by pollen-pollen and pollen-food syndromes. They allow the identification of severity factors linked to the prognosis and the best-adapted immunotherapy.

Keywords: specific IgE, allergy, cross reactivity, molecular allergens

Procedia PDF Downloads 64
1306 Effect of Inspiratory Muscle Training on Diaphragmatic Strength Following Coronary Revascularization

Authors: Abeer Ahmed Abdelhamed

Abstract:

Introduction: Postoperative pulmonary complications (PPCs) are the most common complications observed and managed after abdominal or cardiothoracic surgery. Hypoxemia, atelectasis, pleural effusion, or diaphragmatic dysfunction, are often a source of morbidity in cardiac surgery patients, and are more common in patients receiving unilateral or bilateral internal mammary artery (IMT) grafts than patients receiving saphenous vein (SV) grafts alone. Purpose: The aim of this work was to investigate the effect of Threshold load inspiratory muscle training on pulmonary gas exchange and maximum inspiratory pressure (MIP) in patient undergoing coronary revascularization. Subject: Thirty three male patients eligible for coronary revascularization were selected to participate in the study. Method: They were divided into two groups(17 patients in the intervention group and 16 patients in the control group), the interventional group received inspiratory muscle training at 30% of their maximum inspiratory pressure throughout the hospitalization period in addition to routine post operative care. Result: The results of this study showed a significant improvement on maximum inspiratory pressure(MIP), Arterial-alveolar pressure gradient (A-a gradient) and oxygen saturation in the intervention group. Conclusion: Inspiratory muscle training using threshold mode significantly improves maximum inspiratory pressure, pulmonary gas exchange tested by alveolar-arterial gradient and oxygen saturation in Patients undergoing coronary revascularization.

Keywords: coronary revascularization, inspiratory muscle training, maximum inspiratory pressure, pulmonary gas exchange

Procedia PDF Downloads 299
1305 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 603
1304 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables

Authors: Edokpa Idemudia Waziri, Salisu S. Umar

Abstract:

The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency.

Keywords: average run length, markov chain, multivariate exponentially weighted moving average, optimal smoothing parameter

Procedia PDF Downloads 420
1303 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 79