Search results for: solid state fermentation
9264 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions
Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze
Abstract:
Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.Keywords: Microhardness, internal friction, shear modulus, Monocrystalline
Procedia PDF Downloads 3529263 New Scheme of Control and Air Supply in a Low-Power Hot Water Boiler
Authors: М. Zh. Khazimov, А. B. Kudasheva
Abstract:
The article presents the state of solid fuel reserves and their share in the world energy sector. The air pollution caused by the operation of heating devices using solid fuels is a significant problem. In order to improve the air quality, heating device producers take constant measures to improve their products. However, the emission results achieved during an initial test of heating devices in the laboratory may be much worse during operation in real operating conditions. The ways of increasing the efficiency of the boiler by improving its design for combustion in full-layer mode are shown. The results of the testing of the improved КВТС-0.2 hot water boiler is presented and the technical and economic indicators are determined, which indicate an increase in the efficiency of the boiler.Keywords: boiler unit, grate, furnace, coal, ash
Procedia PDF Downloads 709262 Bioethanol Production from Marine Algae Ulva Lactuca and Sargassum Swartzii: Saccharification and Process Optimization
Authors: M. Jerold, V. Sivasubramanian, A. George, B.S. Ashik, S. S. Kumar
Abstract:
Bioethanol is a sustainable biofuel that can be used alternative to fossil fuels. Today, third generation (3G) biofuel is gaining more attention than first and second-generation biofuel. The more lignin content in the lignocellulosic biomass is the major drawback of second generation biofuels. Algae are the renewable feedstock used in the third generation biofuel production. Algae contain a large number of carbohydrates, therefore it can be used for the fermentation by hydrolysis process. There are two groups of Algae, such as micro and macroalgae. In the present investigation, Macroalgae was chosen as raw material for the production of bioethanol. Two marine algae viz. Ulva Lactuca and Sargassum swartzii were used for the experimental studies. The algal biomass was characterized using various analytical techniques like Elemental Analysis, Scanning Electron Microscopy Analysis and Fourier Transform Infrared Spectroscopy to understand the physio-Chemical characteristics. The batch experiment was done to study the hydrolysis and operation parameters such as pH, agitation, fermentation time, inoculum size. The saccharification was done with acid and alkali treatment. The experimental results showed that NaOH treatment was shown to enhance the bioethanol. From the hydrolysis study, it was found that 0.5 M Alkali treatment would serve as optimum concentration for the saccharification of polysaccharide sugar to monomeric sugar. The maximum yield of bioethanol was attained at a fermentation time of 9 days. The inoculum volume of 1mL was found to be lowest for the ethanol fermentation. The agitation studies show that the fermentation was higher during the process. The percentage yield of bioethanol was found to be 22.752% and 14.23 %. The elemental analysis showed that S. swartzii contains a higher carbon source. The results confirmed hydrolysis was not completed to recover the sugar from biomass. The specific gravity of ethanol was found to 0.8047 and 0.808 for Ulva Lactuca and Sargassum swartzii, respectively. The purity of bioethanol also studied and found to be 92.55 %. Therefore, marine algae can be used as a most promising renewable feedstock for the production of bioethanol.Keywords: algae, biomass, bioethaol, biofuel, pretreatment
Procedia PDF Downloads 1599261 Hyper-Production of Lysine through Fermentation and Its Biological Evaluation on Broiler Chicks
Authors: Shagufta Gulraiz, Abu Saeed Hashmi, Muhammad Mohsin Javed
Abstract:
Lysine required for poultry feed is imported in Pakistan to fulfil the desired dietary needs. Present study was designed to produce maximum lysine by utilizing cheap sources to save the foreign exchange. To achieve the goal of lysine production through fermentation, large scale production of lysine was carried out in 7.5 L stirred glass vessel fermenter with wild and mutant Brevibacterium flavum (B. flavum) using all pre-optimized conditions. The identification of produced lysine was carried out by TLC and amino acid analyzer. Toxicity evaluation of produced lysine was performed before feeding to broiler chicks. During biological trial concentrated fermented broth having 8% lysine was used in poultry rations as a source of Lysine for test birds. Fermenter scale studies showed that the maximum lysine (20.8 g/L) was produced at 250 rpm, 1.5 vvm aeration, 6.0% inoculum under controlled pH conditions after 56 h of fermentation with wild culture but mutant (BFENU2) gave maximum yield of lysine 36.3 g/L under optimized condition after 48 h. Amino acid profiling showed 1.826% Lysine in fermented broth by wild B. flavum and 2.644% by mutant strain (BFENU2). Toxicity evaluation report showed that the produced lysine is safe for consumption by broilers. Biological evaluation results showed that produced lysine was equally good as commercial lysine in terms of weight gain, feed intake and feed conversion ratio. A cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially in Pakistan to save foreign exchange.Keywords: lysine, fermentation, broiler chicks, biological evaluation
Procedia PDF Downloads 5479260 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets
Authors: Behnoush Dousti, Ye Choi, Gil S. Lee
Abstract:
Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor
Procedia PDF Downloads 1429259 Design of Collection and Transportation System of Municipal Solid Waste in Meshkinshahr City
Authors: Ebrahim Fataei, Seyed Ali Hosseini, Zahra Arabi, Habib farhadi, Mehdi Aalipour Erdi, Seiied Taghi Seiied Safavian
Abstract:
Solid waste production is an integral part of human life and management of waste require full scientific approach and essential planning. The allocation of most management cost to collection and transportation and also the necessity of operational efficiency in this system, by limiting time consumption, and on the other hand optimum collection system and transportation is the base of waste design and management. This study was done to optimize the exits collection and transportation system of solid waste in Meshkinshahr city. So based on the analyzed data of municipal solid waste components in seven zones of Meshkinshahr city, and GIS software, applied to design storage place based on origin recycling and a route to collect and transport. It was attempted to represent an appropriate model to store, collect and transport municipal solid waste. The result shows that GIS can be applied to locate the waste container and determine a waste collection direction in an appropriate way.Keywords: municipal solid waste management, transportation, optimizing, GIS, Iran
Procedia PDF Downloads 5349258 Solid Dispersions of Cefixime Using β-Cyclodextrin: Characterization and in vitro Evaluation
Authors: Nagasamy Venkatesh Dhandapani, Amged Awad El-Gied
Abstract:
Cefixime, a BCS class II drug, is insoluble in water but freely soluble in acetone and in alcohol. The aqueous solubility of cefixime in water is poor and exhibits exceptionally slow and intrinsic dissolution rate. In the present study, cefixime and β-Cyclodextrin (β-CD) solid dispersions were prepared with a view to study the effect and influence of β-CD on the solubility and dissolution rate of this poorly aqueous soluble drug. Phase solubility profile revealed that the solubility of cefixime was increased in the presence of β-CD and was classified as AL-type. Effect of variable, such as drug:carrier ratio, was studied. Physical characterization of the solid dispersion was characterized by Fourier transform infrared spectroscopy (FT-IR) and Differential scanning calorimetry (DSC). These studies revealed that a distinct loss of drug crystallinity in the solid molecular dispersions is ostensibly accounting for enhancement of dissolution rate in distilled water. The drug release from the prepared solid dispersion exhibited a first order kinetics. Solid dispersions of cefixime showed a 6.77 times fold increase in dissolution rate over the pure drug.Keywords: β-cyclodextrin, cefixime, dissolution, Kneading method, solid dispersions, release kinetics
Procedia PDF Downloads 3169257 Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana
Authors: Nidhi Nalin
Abstract:
This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable.Keywords: fermentation, thermotoga, hydrogen, vinegar, biofuel
Procedia PDF Downloads 1559256 Preparation of Li Ion Conductive Ceramics via Liquid Process
Authors: M. Kotobuki, M. Koishi
Abstract:
Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.Keywords: co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte
Procedia PDF Downloads 3529255 Solid Waste Management Challenges and Possible Solution in Kabul City
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system
Procedia PDF Downloads 3369254 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications
Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken
Abstract:
High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state
Procedia PDF Downloads 3389253 Solid Waste Generation, Composition and Potentiality of Waste to Resource Recovery in Narayanganj City Corporation
Authors: Md. Jisan Ahmed, M. A. Taher
Abstract:
One of the cities in Bangladesh that is developing the fastest is Narayanganj City Corporation. In 2011, the municipality of Narayanganj was transformed into a city corporation, with 27 wards combining Kadamrasul Municipality, Siddhirganj Municipality, and Narayanganj Town. It is also one of Bangladesh's most important industrial centers in Bangladesh. Narayanganj City Corporation (NCC), which has had high development growth, is also generating more solid waste on a high per-capita basis. Because of the increasing rate of population expansion, business activity, industrial development, and fast urbanization, NCC is today creating more waste than ever before. The enormous amount of solid garbage produced in NCC is currently causing air pollution, soil contamination, water pollution, drainage system blockages, and an unpleasant urban environment. The study aimed to find out the amount of solid waste produced per day in NCC by exploring the waste composition and potentiality of resource recovery from the produced solid waste. This study considered household surveys, polythene bag surveys, questionnaire surveys in commercial and industrial sectors, KIIs, FGDs, and lab tests to identify the total amount of waste generated in NCC with waste composition and potentiality for energy recovery from the generated waste. This study has explored that NCC is producing about 922 tons of solid waste per day from households, commercial activities, and industrial sectors where the existing waste collection rate by NCC authority is only about 50% of total generated waste. This study has also explored that about 75% of daily-produced solid waste is perishable with comparatively high moisture content whereas 18 % and 7% are non-perishable and hazardous. It is also explored that there is no resource recovery plant for solid waste management in NCC. On the other hand, this study has explored that the calorific value of the produced solid waste favors resource recovery like waste to electricity. The generated solid waste composition is also in favor of waste-to-biogas, and waste-to-compost fertilizer production. This study has advocated that initiatives need to develop a solid waste management plant in NCC for resource recovery from solid waste. This research may provide a quick overview of the rate of solid waste generation, its composition, and the potential for resource recovery from solid waste in Bangladesh's metropolitan regions. It can also provide information and knowledge to other trash departments in different cities and municipalities in Bangladesh.Keywords: solid waste, waste composition, waste management, resource recovery from solid waste
Procedia PDF Downloads 209252 Optimization of Digestive Conditions of Opuntia ficus-indica var. Saboten using Food-Grade Enzymes
Authors: Byung Wook Yang, Sae Kyul Kim, Seung Il Ahn, Jae Hee Choi, Heejung Jung, Yejin Choi, Byung Yong Kim, Young Tae Hahm
Abstract:
Opuntia ficus-indica is a member of the Cactaceae family that is widely grown in all the semiarid countries throughout the world. Opuntia ficus-indica var. Saboten (OFS), commonly known as prickly pear cactus, is commercially cultivated as a dietary foodstuffs and medicinal stuffs in Jeju Island, Korea. Owing to high viscosity of OFS’ pad, its application to the commercial field has been limited. When the low viscosity of OFS’s pad is obtained, it is useful for the manufacture of healthy food in the related field. This study was performed to obtain the optimal digestion conditions of food-grade enzymes (Pectinex, Viscozyme and Celluclast) with the powder of OFS stem. And also, the contents of water-soluble dietary fiber (WSDF) of the dried powder prepared by the extraction of OFS stem were monitored and optimized using the response surface methodology (RSM), which included 20 experimental points with 3 replicates for two independent variables (fermentation temperature and time). A central composite design was used to monitor the effect of fermentation temperature (30-90 °C, X1) and fermentation time (1-10h, X2) on dependent variables, such as viscosity (Y1), water-soluble dietary fiber (Y2) and dietary fiber yield (Y3). Estimated maximum values at predicted optimum conditions were in agreement with experimental values. Optimum temperature and duration were 50°C and 12 hours, respectively. Viscosity value reached 3.4 poise. Yield of water-soluble dietary fiber is determined in progress.Keywords: Opuntia ficus-indica var. saboten, enzymatic fermentation, response surface methodology, water-soluble dietary fiber, viscosity
Procedia PDF Downloads 3469251 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores
Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra
Abstract:
Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission
Procedia PDF Downloads 4809250 Establishing the Microbial Diversity of Traditionally Prepared Rice Beer of Northeast India to Impact in Increasing Its Shelf Life
Authors: Shreya Borthakur, Adhar Sharma
Abstract:
The North-east states of India are well known for their age-old practice of preparing alcoholic beer from rice and millet. They do so in a traditional way by sprinkling starter cake (inoculum) on cooked rice or millet after which the fermentation starts and eventually, forms the beer. This starter cake has a rich composition of different microbes and medicinal herbs along with the powdered rice dough or maize dough with rice bran. The starter cake microbial composition has an important role in determining the microbial succession and metabolic secretions as the fermentation proceeds from the early to its late stage, thus, giving the beer a unique aroma, taste, and other sensory properties of traditionally prepared beer. Here, We have worked on identifying and characterizing the microbial community in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. A total of 18 microbial strains have been isolated from the starter cake of Monpa tribe, while 10 microbial isolates in that of Galo tribe. A metagenomic approach was applied to enumerate the cultural and non-cultural microbes present in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. The findings of the mini-project lays foundation to understand the role of microbes present in the starter cake in the beer’s fermentation process and will aide in future research on re-formulating the starter cakes to prevent the early spoilage of the ready to consume beer as the traditional rice beer has a short shelf-life. The paper concludes with the way forward being controlled CRISPR-Cas9.Keywords: fermentation, traditional beer, microbial succession, preservation, CRISPR-Cas, food microbiology
Procedia PDF Downloads 1239249 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis
Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks
Abstract:
Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol
Procedia PDF Downloads 5229248 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution
Authors: A. Amar
Abstract:
A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be
Procedia PDF Downloads 1769247 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State
Authors: Nwanneka Mmonwuba
Abstract:
Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.Keywords: solid waste, groundwater, disposal, dumpsite
Procedia PDF Downloads 509246 Surgical Treatment Tumors and Cysts of the Pancreas in Children
Authors: Trunov V.O., Ryabov A. B., Poddubny I.V
Abstract:
Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.Keywords: pancreas, tumors, cysts, resection, laparoscopy, children
Procedia PDF Downloads 1409245 Changing Governance and the Role of People's Involvement in Municipal Solid Waste Management: Study of Two Municipal Corporations in Kerala
Authors: Prathibha Ganesan
Abstract:
This paper discusses discontents of inhabitants in the landfills and its culmination into resistance against centralised waste disposal during the last three decades in Kerala. The study is based on a sample survey of 175 households located in the landfill sites and city limits of two Municipal Corporations viz. Thrissur and Cochin. The study found that waste is dumped in the periphery of the urban area where economically and socially vulnerable people are densely populated. Moreover, landfill sites are unscientifically managed to cause severe socio-economic and health issues to the local people, finally leading to their mobilisation and persistent struggle. The struggles often culminate in the closure of landfills or forced relocation or abandonment of the region by the community. The study concluded that persistent people’s struggles compel the local state to either find alternatives to centralised solid waste management system or use political power to subsume the local resistance. The persistence of the struggles determined the type waste governance adopted by the local governments.Keywords: solid waste management, municipal corporation, resistance movements, urban, Kerala
Procedia PDF Downloads 2669244 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production
Authors: Enlin Lo, Ioannis Dogaris, George Philippidis
Abstract:
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid
Procedia PDF Downloads 2199243 Structural Investigation and Hyperfine Interactions of BaBiₓLaₓFe₁₂₋₂ₓO₁₉ (0.0 ≤ X ≤ 0.5) Hexaferrites
Authors: Hakan Gungunes, Ismail A. Auwal, Abdulhadi Baykal, Sagar E. Shirsath
Abstract:
Barium hexaferrite, BaFe₁₂O₁₉, substituted by Bi³⁺ and La³⁺ (BaBiₓLaₓFe₁₂₋₂ₓO₁₉ where 0.0 ≤ x ≤ 0.5) were prepared by solid state synthesis route. The effect of substituted Bi³⁺ and La³⁺ ions on the structure, morphology, magnetic and cation distributions of barium hexaferrite were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. XRD powder patterns were refined by the Rietveld analysis method which confirmed the formation of single phase magneto-plumbite structure and the substitution of La³⁺ and Bi³⁺ ions into the lattice of barium ferrite. These results show that both La³⁺ and Bi³⁺ ions completely enter into barium hexaferrite lattice without disturbing the hexagonal ferrite structure. The EDX spectra confirmed the presence of all the constituents in expected elemental percentage. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi and La substitutions have been determined. Cation distribution in the presently investigated hexaferrite system was estimated using the relative area of Mössbauer spectroscopy.Keywords: hexaferrite, mössbauer, cation distribution, solid state synthesis
Procedia PDF Downloads 3769242 Chemistry and Sources of Solid Biofuel Derived Ambient Aerosols during Cooking and Non-Cooking Hours in Rural Area of Khairatpur, North-Central India
Authors: Sudha Shukla, Bablu Kumar, Gyan Prakash Gupta, U. C. Kulshrestha
Abstract:
Air pollutants emitted from solid biofuels during cooking are the major contributors to poor air quality, respiratory problems, and radiative forcing, etc. in rural areas of most of developing countries. The present study reports the chemical characteristics and sources of ambient aerosols and traces gases during cooking and non-cooking hours emitted during biofuel combustion in a village in North-Central India. Fine aerosol samples along with gaseous species (Sox, NOx, and NH₃) were collected during September 2010-March 2011 at Khairatpur village (KPV) which is located in the Uttar Pradesh state in North-Central India. Results indicated that most of the major ions in aerosols and Sox, NOx, and NH₃ gases were found to be higher during cooking hours as compared to non-cooking hours suggesting that solid biofuel combustion is an important source of air pollution. Results of Principal Component Analysis (PCA) revealed that combustion of solid biofuel, vehicular emissions, and brick kilns were the major sources of fine aerosols and trace gases in the village. A health survey was conducted to find out the relation between users of biofuels and their health effects and the results revealed that most of the women in the village were suffering from diseases associated with biofuel combustion during cooking.Keywords: ambient aerosols, biofuel combustion, cooking, health survey, rural area
Procedia PDF Downloads 2409241 Solid Waste Landfilling Practices, Related Problems and Sustainable Solutions in Turkey
Authors: Nükhet Konuk, N. Gamze Turan, Yüksel Ardalı
Abstract:
Solid waste management is the most environmental problem in Turkey as a result of the rapid increase in solid waste generation caused by the rapid population growth, urbanization, rapid industrialization and economic development. The large quantity of waste generated necessitates system of collection, transportation and disposal. The landfill method for the ultimate disposal of solid waste continues to be widely accepted and used due to its economic advantages. In Turkey, most of the disposal sites open dump areas. Open dump sites may result in serious urban, sanitary and environmental problems such as an unpleasant odor and the risk of explosion as well as groundwater contamination because of leachate percolation. Unsuitable management practices also result in the loss of resources and energy, which could be recycled and produced from a large part of the solid waste. Therefore, over the past few decades, particular attention has been drawn to the sustainable solid waste management as a response to the increase in environmental problems related to the disposal of waste. The objective of this paper is to assess the situation of landfilling practices in Turkey as a developing country and to identify any gaps in the system as currently applied. The results show that approximately 25 million tons of MSW are generated annually in Turkey. The percentage of MSW disposed to sanitary landfill is only 45% whereas more than 50% of MSW is disposed without any control.Keywords: developing countries, open dumping, solid waste management, sustainable landfilling, sustainable solid waste management
Procedia PDF Downloads 3019240 Nutraceutical Characterization of Optimized Shatavari Asparagus racemosus Willd (Asparagaceae) Low Alcohol Nutra Beverage
Authors: Divya Choudhary, Hariprasad P., S. N. Naik
Abstract:
This study examines a low-alcohol nutra-beverage made with shatavari, a plant commonly used in traditional medicine. During fermentation, the addition of a specific strain of yeast affected the beverage's properties, including its pH level, yeast count, ethanol content, and antioxidant, phenolic, and flavonoid levels. We also analyzed the beverage's storage and shelf life. Despite its bitter taste, the low alcohol content of the beverage made it enjoyable to drink and visually appealing. Our analysis showed that the optimal time for fermentation was between the 14th and 21st day when the beverage had ideal levels of sugar, organic acids, and vitamins. The final product contained fructose and citric acid but not succinic, pyruvic, lactic, or acetic acids. It also contained vitamins B2, B1, B12, and B9. During the shelf life analysis, we observed changes in the beverage's pH, TSS, and cfu levels, as well as its antioxidant activity. We also identified volatile (GC-MS) and non-volatile compounds (LC-MS/MS) in the fermented product, some of which were already present in the Shatavari root. The highest yield of product contained the maximum concentration of antioxidant compounds, which depended on both the pH and the microorganisms' physiological status. Overall, our study provides insight into the properties and potential health benefits of this Nutra-beverage.Keywords: antioxidants, fermentation, volatile compounds, acetonin, 1-butanol, non-volatile compounds, Shatavarin V, IX, kaempferol
Procedia PDF Downloads 699239 Visible Light Communication and Challenges
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes
Procedia PDF Downloads 719238 Development of the Manufacturing Process of Low Salt-Fermented Soy Sauce
Authors: Young-Ran Song, Byeong-Uk Lim, Sang-Ho Baik
Abstract:
This study was initiated in order to develop a method for soy sauce fermentation at low salt concentrations without decreasing quality. Soy sauce was fermented with the fermentation starter (meju) and different salt contents (8-14%, w/v) by inoculating two strains or not, in which Torulaspora delbrueckii and Pichia guilliermondii strains having different abilities to induce sterilizing effects or enhance flavor production were used. As the results, there were microbial and biochemical differences among prepared soy sauce. First, Staphylococcus and Enterococcus spp. in addition to Bacillus genus that is the most important bacteria in Korean fermented soy product were detected by salt reduction. However, application of yeast starters can inhibit the undesirable bacterial growth. Moreover, PCA bi-plots of major principal components on various biochemical parameters (final pH, total acidity, soluble sugar, reducing sugar, ethanol and 32 volatile flavor compounds) were drawn to demonstrate the physicochemical differences and similarities among the samples. It was confirmed that the soy sauce samples produced with different salt concentrations were clearly different since salt reduction induced low contents of acids, alcohols and esters with higher acidity. However despite low salt concentration, combining two different yeasts appeared to have similar characteristics to the high salt-fermented soy sauce with elevated concentrations of ethanol, some alcohols, and most ketones, hence resulted in a balance of more complex and richer flavors with a flavor profile pattern identical to that of high-salt.Keywords: Soy sauce, low salt, fermentation, yeast.
Procedia PDF Downloads 3919237 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.Keywords: polymer, TGA, pollution, landfill, waste, plastic
Procedia PDF Downloads 1299236 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System
Authors: Qasem A. Alyazji
Abstract:
One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)
Procedia PDF Downloads 1679235 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability
Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher
Abstract:
Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectivelyKeywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge
Procedia PDF Downloads 75