Search results for: soft LA-rings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 971

Search results for: soft LA-rings

761 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template

Procedia PDF Downloads 379
760 Using Electro-Biogrouting to Stabilize of Soft Soil

Authors: Hamed A. Keykha, Hadi Miri

Abstract:

This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.

Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement

Procedia PDF Downloads 528
759 Geotechnical Evaluation and Sizing of the Reinforcement Layer on Soft Soil in the Construction of the North Triage Road Clover, in Brasilia Federal District, Brazil

Authors: Rideci Farias, Haroldo Paranhos, Joyce Silva, Elson Almeida, Hellen Silva, Lucas Silva

Abstract:

The constant growth of the fleet of vehicles in the big cities, makes that the Engineering is dynamic, with respect to the new solutions for traffic flow in general. In the Federal District (DF), Brazil, it is no different. The city of Brasilia, Capital of Brazil, and Cultural Heritage of Humanity by UNESCO, is projected to 500 thousand inhabitants, and today circulates more than 3 million people in the city, and with a fleet of more than one vehicle for every two inhabitants. The growth of the city to the North region, made that the urban planning presented solutions for the fleet in constant growth. In this context, a complex of viaducts, road accesses, creation of new rolling roads and duplication of the Bragueto bridge over Paranoa lake in the northern part of the city was designed, giving access to the BR-020 highway, denominated Clover of North Triage (TTN). In the geopedological context, the region is composed of hydromorphic soils, with the presence of the water level at some times of the year. From the geotechnical point of view, are soils with SPT < 4 and Resistance not drained, Su < 50 kPa. According to urban planning in Brasília, special art works can not rise in the urban landscape, contrasting with the urban characteristics of the architects Lúcio Costa and Oscar Niemeyer. Architects hired to design the new Capital of Brazil. The urban criterion then created the technical impasse, resulting in the technical need to ‘bury’ the works of art and in turn the access greenhouses at different levels, in regions of low support soil and water level Outcrossing, generally inducing the need for this study and design. For the adoption of the appropriate solution, Standard Penetration Test (SPT), Vane Test, Diagnostic peritoneal lavage (DPL) and auger boring campaigns were carried out. With the comparison of the results of these tests, the profiles of resistance of the soils and water levels were created in the studied sections. Geometric factors such as existing sidewalks and lack of elevation for the discharge of deep drainage water have inhibited traditional techniques for total removal of soft soils, thus avoiding the use of temporary drawdown and shoring of excavations. Thus, a structural layer was designed to reinforce the subgrade by means of the ‘needling’ of the soft soil, without the need for longitudinal drains. In this context, the article presents the geological and geotechnical studies carried out, but also the dimensioning of the reinforcement layer on the soft soil with a view to the main objective of this solution that is to allow the execution of the civil works without the interference in the roads in use, Execution of services in rainy periods, presentation of solution compatible with drainage characteristics and soft soil reinforcement.

Keywords: layer, reinforcement, soft soil, clover of north triage

Procedia PDF Downloads 226
758 Erasmus+ Program in Vocational Education: Effects of European International Mobility in Portuguese Vocational Schools

Authors: José Carlos Bronze, Carlinda Leite, Angélica Monteiro

Abstract:

The creation of the Erasmus Program in 1987 represented a milestone in promoting and funding international mobility in higher education in Europe. Its effects were so significant that they influenced the creation of the European Higher Education Area through the Bologna Process and ensured the program’s continuation and maintenance. Over the last decades, the escalating figures of participants and funds instigated significant scientific studies on the program's effects on higher education. More recently, in 2014, the program was renamed “Erasmus+” when it expanded into other fields of education, namely Vocational Education and Training (VET). Despite being now running in this field of education for a decade (2014-2024), its effects on VET remain less studied and less known, while the higher education field keeps attracting researchers’ attention. Given this gap, it becomes relevant to study the effects of E+ on VET, particularly in the priority domains of the Program: “Inclusion and Diversity,” “Participation in Democratic Life, Common Values and Civic Engagement,” “Environment and Fight Against Climate Change,” and “Digital Transformation.” This latter has been recently emphasized due to the COVID-19 pandemic that forced the so-called emergency remote teaching, leading schools to quickly transform and adapt to a new reality regardless of the preparedness levels of teachers and students. Together with the remaining E+ priorities, they directly relate to an emancipatory perspective of education sustained in soft skills such as critical thinking, intercultural awareness, autonomy, active citizenship, teamwork, and problem-solving, among others. Based on this situation, it is relevant to know the effects of E+ on the VET field, namely questioning how international mobility instigates digitalization processes and supports emancipatory queries therein. As an education field that more directly connects to hard skills and an instrumental approach oriented to the labor market’s needs, a study was conducted to determine the effects of international mobility on developing digital literacy and soft skills in the VET field. In methodological terms, the study used semi-structured interviews with teaching and non-teaching staff from three VET schools who are strongly active in the E+ Program. The interviewees were three headmasters, four mobility project managers, and eight teachers experienced in international mobility. The data was subjected to qualitative content analysis using the NVivo 14 application. The results show that E+ international mobility promotes and facilitates the use of digital technologies as a pedagogical resource at VET schools and enhances and generates students’ soft skills. In conclusion, E+ mobility in the VET field supports adopting the program’s priorities by increasing the teachers’ knowledge and use of digital resources and amplifying and generating participants’ soft skills.

Keywords: Erasmus international mobility, digital literacy, soft skills, vocational education and training

Procedia PDF Downloads 32
757 Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads

Authors: Alvaro Quino, Roger Trejo, Gary Duran, Jordy Viso

Abstract:

This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study.

Keywords: sandy clay soils, rice husk ash, expanded polystyrene, soft soils

Procedia PDF Downloads 172
756 Analysis of Soft and Hard X-Ray Intensities Using Different Shapes of Anodes in a 4kJ Mather Type Plasma Focus Facility

Authors: Mahsa Mahtab, Morteza Habibi

Abstract:

The effect of different anode tip geometries on the intensity of soft and hard x-ray emitted from a 4 kJ plasma focus device is investigated. For this purpose, 5 different anode tips are used. The shapes of the uppermost region of these anodes have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat and cone-hollow. Analyzed data have shown that cone-flat, spherical-convex and cone-hollow anodes significantly increase X-ray intensity respectively in comparison with cylindrical-flat anode; while the cylindrical-hollow tip decreases. Anode radius reduction at its end in conic or spherical anodes enhance SXR by increasing plasma density through collecting a greater mass of gas and more gradual transition phase to form a more stable dense plasma pinch. Also, HXR is enhanced by increasing the energy of electrons colliding with the anode surface through raise of induced electrical field. Finally, the cone-flat anode is introduced to use in cases in which the plasma focus device is used as an X-ray source due to its highest yield of X-ray emissions.

Keywords: plasma focus, anode tip, HXR, SXR, pinched plasma

Procedia PDF Downloads 400
755 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave

Procedia PDF Downloads 345
754 Promoting Environmental Sustainability in the Workplace: The Be-Green Project

Authors: Elena Carbone, Chiara Meneghetti, Ivan Innocenti, Monica Musicanti, Paola Volpe, Francesca Pazzaglia

Abstract:

Promoting environmental sustainability is becoming a priority for organizations. Little is known, however, on the extent to which green workplace behaviors are linked, alongside organizational determinants, and also to various employees’ individual characteristics. The BE-GREEN research project, in collaboration with Eni S.p.A., aimed at investigating the relationship between the adoption of green workplace behaviors and various employees’ job-related and broader individual characteristics as well as organizational determinants. A sample of 513 Eni employees was administered a survey assessing the adoption of green workplace behaviors and the management of events (e.g., near-miss, unsafe conditions, weak signals) that could anticipate the occurrence of incidents with a harmful environmental impact. The survey also assessed employees’ job-related (e.g., proneness toward behaving pro-environmentally at work) and general (e.g., soft skills, connectedness to nature and environmental awareness) characteristics and perceived organizational support (e.g., environmental culture, leadership). Results showed that the adoption of green workplace behaviors was associated with employees’ proneness toward behaving pro-environmentally at work, and these factors were, in turn, influenced by broader individual characteristics related to soft skills as well as a connectedness to nature and environmental awareness, along with perceived organizational support. The management of events potentially anticipating the occurrence of incidents with a harmful environmental impact was mainly associated with perceived organizational support. These findings highlight how, alongside organizational determinants, different employees’ individual characteristics influence their adoption of green workplace behaviors, with important implications for the development of interventions tailored to promote environmental sustainability in organizations.

Keywords: green workplace behaviors, soft skills, connectedness to nature, environmental awareness.

Procedia PDF Downloads 63
753 Correlation between Cephalometric Measurements and Visual Perception of Facial Profile in Skeletal Type II Patients

Authors: Choki, Supatchai Boonpratham, Suwannee Luppanapornlarp

Abstract:

The objective of this study was to find a correlation between cephalometric measurements and visual perception of facial profile in skeletal type II patients. In this study, 250 lateral cephalograms of female patients from age, 20 to 22 years were analyzed. The profile outlines of all the samples were hand traced and transformed into silhouettes by the principal investigator. Profile ratings were done by 9 orthodontists on Visual Analogue Scale from score one to ten (increasing level of convexity). 37 hard issue and soft tissue cephalometric measurements were analyzed by the principal investigator. All the measurements were repeated after 2 weeks interval for error assessment. At last, the rankings of visual perceptions were correlated with cephalometric measurements using Spearman correlation coefficient (P < 0.05). The results show that the increase in facial convexity was correlated with higher values of ANB (A point, nasion and B point), AF-BF (distance from A point to B point in mm), L1-NB (distance from lower incisor to NB line in mm), anterior maxillary alveolar height, posterior maxillary alveolar height, overjet, H angle hard tissue, H angle soft tissue and lower lip to E plane (absolute correlation values from 0.277 to 0.711). In contrast, the increase in facial convexity was correlated with lower values of Pg. to N perpendicular and Pg. to NB (mm) (absolute correlation value -0.302 and -0.294 respectively). From the soft tissue measurements, H angles had a higher correlation with visual perception than facial contour angle, nasolabial angle, and lower lip to E plane. In conclusion, the findings of this study indicated that the correlation of cephalometric measurements with visual perception was less than expected. Only 29% of cephalometric measurements had a significant correlation with visual perception. Therefore, diagnosis based solely on cephalometric analysis can result in failure to meet the patient’s esthetic expectation.

Keywords: cephalometric measurements, facial profile, skeletal type II, visual perception

Procedia PDF Downloads 138
752 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring

Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove

Abstract:

Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.

Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor

Procedia PDF Downloads 75
751 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 180
750 Mechanical Characterization of Brain Tissue in Compression

Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab

Abstract:

The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.

Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate

Procedia PDF Downloads 656
749 Managing Climate Change: Vulnerability Reduction or Resilience Building

Authors: Md Kamrul Hassan

Abstract:

Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.

Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability

Procedia PDF Downloads 194
748 The Existence of a Sciatic Artery in Congenital Lower Limb Deformities

Authors: Waseem Al Talalwah, Shorok Al Dorazi, Roger Soames

Abstract:

Persistent sciatic artery is a rare anatomical vascular variation resulting from a lack of regression of the embryonic dorsal axial artery. The axial artery is the main artery supplying the lower limb during development in the first trimester. The current research includes 206 sciatic artery cases in 171 patients between 1864 and 2012. It aims to identify the risk factor of sciatic artery aneurysm in congenital limb anomalies. Sciatic artery aneurysm was diagnosed incidentally in amniotic band syndrome (ABS) existing with no congenital anomaly in 0.7% or with double knee in 0.7%, with the tibia in 0.7% and with hemihypertrophy or soft tissue hypertrophy in 1.4%. Therefore, the current study indicates a relationship the same gene responsible for the congenital limb deformities may be responsible for non-regression of the sciatic artery. Furthermore, pediatricians should refer cases of congenital limb anomalies for vascular evaluation prior to corrective surgical intervention.

Keywords: amniotic band syndrome, congenital limb deformities, double knee, sciatic artery, sciatic artery aneurysm , soft tissue hypertrophy

Procedia PDF Downloads 376
747 Microbial Assessment of Dairy Byproducts in Albania as a Basis for Consumer Safety

Authors: Klementina Puto, Ermelinda Nexhipi, Evi Llaka

Abstract:

Dairy by-products are a fairly good environment for microorganisms due to their composition for their growth. Microbial populations have a significant impact in the production of cheese, butter, yogurt, etc. in terms of their organoleptic quality and at the same time some also cause their breakdown. In this paper, the microbiological contamination of soft cheese, butter and yogurt produced in the country (domestic) and imported is assessed, as an indicator of hygiene with impact on public health. The study was extended during September 2018-June 2019 and was divided into three periods, September-December, January-March, and April-June. During this study, a total of 120 samples were analyzed, of which 60 samples of cheese and butter locally produced, and 60 samples of imported soft cheese and butter productions. The microbial indicators analyzed are Staphylococcus aureus and E. coli. Analyzes have been conducted at the Food Safety Laboratory (FSIV) in Tirana in accordance with EU Regulation 2073/2005. Sampling was performed according to the specific international standards for these products (ISO 6887 and ISO 8261). Sampling and transport of samples were done under sterile conditions. Also, coding of samples was done to preserve the anonymity of subjects. After the analysis, the country's soft cheese products compared to imports were more contaminated with S. aureus and E. coli. Meanwhile, the imported butter samples that were analyzed, resulted within norms compared to domestic ones. Based on the results, it was concluded that the microbial quality of samples of cheese, butter and yogurt analyzed remains a real problem for hygiene in Albania. The study will also serve business operators in Albania to improve their work to ensure good hygiene on the basis of the HACCP plan and to provide a guarantee of consumer health.

Keywords: consumer, health, dairy, by-products, microbial

Procedia PDF Downloads 127
746 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 318
745 Use of Bamboo Piles in Ground Improvement Design: Case Study

Authors: Thayalan Nall, Andreas Putra

Abstract:

A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure.

Keywords: bamboo piles, ground improvement, reclamation, breakwater failure

Procedia PDF Downloads 417
744 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 485
743 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper

Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng

Abstract:

Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.

Keywords: liquid crystal elastomers, microgripper, smart materials, robotics

Procedia PDF Downloads 140
742 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 320
741 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 298
740 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy

Authors: Babak Eslami

Abstract:

Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.

Keywords: multifrequency, sensitivity, soft matter, polymer

Procedia PDF Downloads 134
739 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test

Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi

Abstract:

The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.

Keywords: geofoam, geomembrane, soft ground, strength shear

Procedia PDF Downloads 315
738 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 46
737 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching

Authors: Ly. Benbahouche

Abstract:

Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics. The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments. The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device). Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.

Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt

Procedia PDF Downloads 316
736 Improving Anchor Technology for Adapting the Weak Soil

Authors: Sang Hee Shin

Abstract:

The technical improving project is for using the domestic construction technology in the weak soil condition. The improved technology is applied directly under local construction site at OOO, OOO. Existing anchor technology was developed for the case of soft ground as N value 10 or less. In case of soft ground and heavy load, the attachment site per one strand is shortened due to the distributed interval so that the installation site is increased relatively and being economically infeasible. In addition, in case of high tensile load, adhesion phenomenon between wedge and block occurs. To solve these problems, it strengthens the function of the attached strands to treat a ‘bulbing’ on the strands. In the solution for minimizing the internal damage and strengthening the removal function, it induces lubricating action using the film and the attached film, and it makes the buffer structure using wedge lubricating structure and the spring. The technology is performed such as in-house testing and the field testing. The project can improve the reliability of the standardized quality technique. As a result, it intended to give the technical competitiveness.

Keywords: anchor, improving technology, removal anchor, soil reinforcement, weak soil

Procedia PDF Downloads 210
735 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 218
734 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model

Authors: Maryam Tajadod

Abstract:

The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.

Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose

Procedia PDF Downloads 112
733 The Semiotics of Soft Power; An Examination of the South Korean Entertainment Industry

Authors: Enya Trenholm-Jensen

Abstract:

This paper employs various semiotic methodologies to examine the mechanism of soft power. Soft power refers to a country’s global reputation and their ability to leverage that reputation to achieve certain aims. South Korea has invested heavily in their soft power strategy for a multitude of predominantly historical and geopolitical reasons. On account of this investment and the global prominence of their strategy, South Korea was considered to be the optimal candidate for the aims of this investigation. Having isolated the entertainment industry as one of the most heavily funded segments of the South Korean soft power strategy, the analysis restricted itself to this sector. Within this industry, two entertainment products were selected as case studies. The case studies were chosen based on commercial success according to metrics such as streams, purchases, and subsequent revenue. This criterion was deemed to be the most objective and verifiable indicator of the products general appeal. The entertainment products which met the chosen criterion were Netflix’ “Squid Game” and BTS’ hit single “Butter”. The methodologies employed were chosen according to the medium of the entertainment products. For “Squid Game,” an aesthetic analysis was carried out to investigate how multi- layered meanings were mobilized in a show popularized by its visual grammar. To examine “Butter”, both music semiology and linguistic analysis were employed. The music section featured an analysis underpinned by denotative and connotative music semiotic theories borrowing from scholars Theo van Leeuwen and Martin Irvine. The linguistic analysis focused on stance and semantic fields according to scholarship by George Yule and John W. DuBois. The aesthetic analysis of the first case study revealed intertextual references to famous artworks, which served to augment the emotional provocation of the Squid Game narrative. For the second case study, the findings exposed a set of musical meaning units arranged in a patchwork of familiar and futuristic elements to achieve a song that existed on the boundary between old and new. The linguistic analysis of the song’s lyrics found a deceptively innocuous surface level meaning that bore implications for authority, intimacy, and commercial success. Whether through means of visual metaphor, embedded auditory associations, or linguistic subtext, the collective findings of the three analyses exhibited a desire to conjure a form of positive arousal in the spectator. In the synthesis section, this process is likened to that of branding. Through an exploration of branding, the entertainment products can be understood as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept. Limitations in the form of a timeframe biased perspective are addressed, and directions for future research are suggested. This paper employs semiotic methodologies to examine two entertainment products as mechanisms of soft power. Through means of visual metaphor, embedded auditory associations, or linguistic subtext, the findings reveal a desire to conjure positive arousal in the spectator. The synthesis finds similarities to branding, thus positioning the entertainment products as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept.

Keywords: BTS, cognitive semiotics, entertainment, soft power, south korea, squid game

Procedia PDF Downloads 153
732 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 138