Search results for: multi-criteria selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2389

Search results for: multi-criteria selection

2179 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 454
2178 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 298
2177 Switching Losses in Power Electronic Converter of Switched Reluctance Motor

Authors: Ali Asghar Memon

Abstract:

A cautious and astute selection of switching devices used in power electronic converters of a switched reluctance (SR) motor is required. It is a matter of choice of best switching devices with respect to their switching ability rather than fulfilling the number of switches. This paper highlights the computational determination of switching losses comprising of switch-on, switch-off and conduction losses respectively by using experimental data in simulation model of a SR machine. The finding of this research is helpful for proper selection of electronic switches and suitable converter topology for switched reluctance motor.

Keywords: converter, operating modes, switched reluctance motor, switching losses

Procedia PDF Downloads 507
2176 Assessment of Relationships between Agro-Morphological Traits and Cold Tolerance in Faba Bean (vicia faba l.) and Wild Relatives

Authors: Nisa Ertoy Inci, Cengiz Toker

Abstract:

Winter or autumn-sown faba bean (Vicia faba L.) is one the most efficient ways to overcome drought since faba bean is usually grown under rainfed where drought and high-temperature stresses are the main growth constraints. The objectives of this study were assessment of (i) relationships between cold tolerance and agro-morphological traits, and (ii) the most suitable agro-morphological trait(s) under cold conditions. Three species of the genus Vicia L. includes 109 genotypes of faba bean (Vicia faba L.), three genotypes of narbon bean (V. narbonensis L.) and two genotypes of V. montbretii Fisch. & C.A. Mey. Davis and Plitmann were sown in autumn at highland of Mediterranean region of Turkey. All relatives of faba bean were more cold-tolerant than the faba bean genotypes. Three faba bean genotypes, ACV-42, ACV-84 and ACV-88, were selected as sources of cold tolerance under field conditions. Path and correlation coefficients and factor and principal component analyses indicated that biological yield should be evaluated in selection for cold tolerance under cold conditions ahead of many agro-morphological traits. The seed weight should be considered for selection in early breeding generations because they had the highest heritability.

Keywords: cold tolerance, faba bean, narbon bean, selection

Procedia PDF Downloads 398
2175 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game

Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha

Abstract:

Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.

Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm

Procedia PDF Downloads 402
2174 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: construction safety, contractor selection, decision support system, relational database

Procedia PDF Downloads 280
2173 Design of Target Selection for Pedestrian Autonomous Emergency Braking System

Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu

Abstract:

An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.

Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel

Procedia PDF Downloads 157
2172 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 34
2171 The Economic Value of Mastitis Resistance in Dairy Cattle in Kenya

Authors: Caleb B. Sagwa, Tobias O. Okeno, Alexander K. Kahi

Abstract:

Dairy cattle production plays an important role in the Kenyan economy. However, high incidences of mastitis is a major setback to the productivity in this industry. The current dairy cattle breeding objective in Kenya does not include mastitis resistance, mainly because the economic value of mastitis resistance has not been determined. Therefore this study aimed at estimating the economic value of mastitis resistance in dairy cattle in Kenya. Initial input parameters were obtained from literature on dairy cattle production systems in the tropics. Selection index methodology was used to derive the economic value of mastitis resistance. Somatic cell count (SCC) was used an indicator trait for mastitis resistance. The economic value was estimated relative to milk yield (MY). Economic values were assigned to SCC in a selection index such that the overall gain in the breeding goal trait was maximized. The option of estimating the economic value for SCC by equating the response in the trait of interest to its index response was considered. The economic value of mastitis resistance was US $23.64 while maximum response to selection for MY was US $66.01. The findings of this study provide vital information that is a pre-requisite for the inclusion of mastitis resistance in the current dairy cattle breeding goal in Kenya.

Keywords: somatic cell count, milk quality, payment system, breeding goal

Procedia PDF Downloads 261
2170 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft

Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth

Abstract:

Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.

Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity

Procedia PDF Downloads 342
2169 Auto-Tuning of CNC Parameters According to the Machining Mode Selection

Authors: Jenq-Shyong Chen, Ben-Fong Yu

Abstract:

CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.

Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality

Procedia PDF Downloads 380
2168 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates

Authors: Abeer Amayri, Akif A. Bulgak

Abstract:

Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.

Keywords: global supply chains, quality, stochastic programming, supplier selection

Procedia PDF Downloads 458
2167 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 111
2166 A Range of Steel Production in Japan towards 2050

Authors: Reina Kawase

Abstract:

Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050.

Keywords: goods trade scenario, steel making process selection scenario, steel production, global warming

Procedia PDF Downloads 383
2165 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview

Authors: A. Aguezzoul

Abstract:

The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.

Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance

Procedia PDF Downloads 154
2164 Exploring Disruptive Innovation Capacity Effects on Firm Performance: An Investigation in Industries 4.0

Authors: Selma R. Oliveira, E. W. Cazarini

Abstract:

Recently, studies have referenced innovation as a key factor affecting the performance of firms. Companies make use of its innovative capacities to achieve sustainable competitive advantage. In this perspective, the objective of this paper is to contribute to innovation planning policies in industry 4.0. Thus, this paper examines the disruptive innovation capacity on firm performance in Europe. This procedure was prepared according to the following phases: Phase 1: Determination of the conceptual model; and Phase 2: Verification of the conceptual model. The research was initially conducted based on the specialized literature, which extracted the data regarding the constructs/structure and content in order to build the model. The research involved the intervention of experts knowledgeable on the object studied, selected by technical-scientific criteria. The data were extracted using an assessment matrix. To reduce subjectivity in the results achieved the following methods were used complementarily and in combination: multicriteria analysis, multivariate analysis, psychometric scaling and neurofuzzy technology. The data were extracted using an assessment matrix and the results were satisfactory, validating the modeling approach.

Keywords: disruptive innovation, capacity, performance, Industry 4.0

Procedia PDF Downloads 165
2163 Material Selection for Footwear Insole Using Analytical Hierarchal Process

Authors: Mohammed A. Almomani, Dina W. Al-Qudah

Abstract:

Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.

Keywords: AHP, footwear insole, insole material, materials selection

Procedia PDF Downloads 349
2162 Systematic Analysis of Logistics Location Search Methods under Aspects of Sustainability

Authors: Markus Pajones, Theresa Steiner, Matthias Neubauer

Abstract:

Selecting a logistics location is vital for logistics providers, food retailing and other trading companies since the selection poses an essential factor for economic success. Therefore various location search methods like cost-benefit analysis and others are well known and under usage. The development of a logistics location can be related to considerable negative effects for the eco system such as sealing the surface, wrecking of biodiversity or CO2 and noise emissions generated by freight and commuting traffic. The increasing importance of sustainability demands for taking an informed decision when selecting a logistics location for the future. Sustainability considers economic, ecologic and social aspects which should be equally integrated in the process of location search. Objectives of this paper are to define various methods which support the selection of sustainable logistics locations and to generate knowledge about the suitability, assets and limitations of the methods within the selection process. This paper investigates the role of economical, ecological and social aspects when searching for new logistics locations. Thereby, related work targeted towards location search is analyzed with respect to encoded sustainability aspects. In addition, this research aims to gain knowledge on how to include aspects of sustainability and take an informed decision when searching for a logistics location. As a result, a decomposition of the various location search methods in there components leads to a comparative analysis in form of a matrix. The comparison within a matrix enables a transparent overview about the mentioned assets and limitations of the methods and their suitability for selecting sustainable logistics locations. A further result is to generate knowledge on how to combine the separate methods to a new method for a more efficient selection of logistics locations in the context of sustainability. Future work will especially investigate the above mentioned combination of various location search methods. The objective is to develop an innovative instrument, which supports the search for logistics locations with a focus on a balanced sustainability (economy, ecology, social). Because of an ideal selection of logistics locations, induced traffic should be reduced and a mode shift to rail and public transport should be facilitated.

Keywords: commuting traffic, freight traffic, logistics location search, location search method

Procedia PDF Downloads 321
2161 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers

Authors: Oluwatosin M. A. Jesuyon

Abstract:

In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.

Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight

Procedia PDF Downloads 203
2160 Determinants of Successful Accounting Information System Outsourcing for the Egyptian Small and Medium Enterprises: An Empirical Study

Authors: Maram Elkady

Abstract:

Purpose: The purpose behind this study is to determine the impact of some factors on achieving successful accounting information systems (AIS) outsourcing in Egypt, taking into account two factors: the selection of an effective accounting service provider and the quality relationships between the client firm and the accounting service provider. The researcher measured outsourcing success through the perceived benefits, including (strategic, technological, and economic benefits). Design/Methodology/Approach: A survey was carried out by means of questionnaires answered by 152 small and medium Egyptian firms outsourcing their accounting activities. The researcher targeted the personnel in the client firms who were in direct contact with the accounting outsourcer. The hypotheses were tested through multiple regression analysis using SPSS 24 and AMOS 22. Findings: Building a quality relationship with the provider is found to have more impact than the effective selection of the AIS provider on the success of the AIS outsourcing process. Originality/Value: The researcher found that some proxies of each success determinant can be more influential than others based on type of benefits perceived from AIS outsourcing (strategic, technological, and economic).

Keywords: accounting information system, AIS, outsourcing, successful outsourcing, AIS service provider selection, relationship with the accounting service provider

Procedia PDF Downloads 158
2159 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks

Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi

Abstract:

In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.

Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward

Procedia PDF Downloads 581
2158 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 92
2157 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis

Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri

Abstract:

In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.

Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer

Procedia PDF Downloads 85
2156 Comparative Study of Various Wall Finishes in Buildings in Ondo State, Nigeria

Authors: Ayodele Oluwole Alejo

Abstract:

Wall finishes are the term to describe an application over a wall surface to provide a suitable surface. Wall finishes are smelt, touched and seen by building occupiers even colour and design affects the user psychology and the atmosphere of our building. Building users/owners seem not to recognize the function of various wall finishes in building and factors to be considered in selecting them suitable for the type and purpose of proposed buildings. Therefore, defects such as deterioration, dampness, and stain may occur when comparisons of wall finishes are not made before the selection of appropriate materials at the design stage with knowledge of the various factors that may hinder the performance or maintenance culture of proposed building of a particular location. This research work investigates and compares various wall finishes in building. Buildings in Ondo state, Nigeria were used as the target area to conduct the research works. The factors bearing on various wall finishes were analyzed to find out their individual and collective impact using suitable analytical tools. The findings revealed that paint with high percentage score was the most preferred wall finishes, whereas wall paper was ranked the least by the respondent findings, Factors considered most in the selection of wall finishes was durability with the highest ranking percentage and least was the cost. The study recommends that skilled worker should carry out operations, quality product should be used and all of wall finishes and materials should be considered before selection.

Keywords: building, construction, design, finishes, wall

Procedia PDF Downloads 138
2155 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 397
2154 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach

Authors: Mukesh Kumar Shah, Tushar Gupta

Abstract:

An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.

Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits

Procedia PDF Downloads 129
2153 Emotional Labour and Employee Performance Appraisal: The Missing Link in Some Hotels in South East Nigeria

Authors: Polycarp Igbojekwe

Abstract:

The main objective of this study was to determine if emotional labour has become a criterion in performance appraisal, job description, selection, and training schemes in the hotel industry in Nigeria. Our main assumption was that majority of hotel organizations have not built emotional labour into their human resources management schemes. Data were gathered by the use of structured questionnaires designed in Likert format, and interviews. The focus group was managers of the selected hotels. Analyses revealed that majority of the hotels have not built emotional labour into their human resources schemes particularly in the 1, 2, and 3-star hotels. It was observed that service employees of 1, 2, and 3-star hotels have not been adequately trained to perform emotional labour; a critical factor in quality service delivery. Managers of 1, 2, and 3-star hotels have not given serious thought to emotional labour as a critical factor in quality service delivery. The study revealed that suitability of an individual’s characteristics is not being considered as a criterion for selection and performance appraisal for service employees. The implication of this is that, person-job-fit is not seriously considered. It was observed that there has been a disconnect between required emotional competency, its recognition, evaluation, and training. Based on the findings of this study, it is concluded that selection, training, job description and performance appraisal instruments in use in hotels in Nigeria are inadequate. Human resource implications of the findings in this study are presented. It is recommended that hotel organizations should re-design and plan the emotional content and context of their human resources practices to reflect the emotional demands of front line jobs in the hotel industry and the crucial role emotional labour plays during service encounters.

Keywords: emotional labour, employee selection, job description, performance appraisal, person-job-fit, employee compensation

Procedia PDF Downloads 191
2152 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 339
2151 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers

Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang

Abstract:

One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.

Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis

Procedia PDF Downloads 438
2150 Selection of Variogram Model for Environmental Variables

Authors: Sheikh Samsuzzhan Alam

Abstract:

The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.

Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models

Procedia PDF Downloads 334