Search results for: interactive models
7394 Overuse Equals to Low Proficiency Level in English: A Corpus-Based Study on the Use of Linking Adverbials between Male and Female Speakers
Authors: Tsungming Wu
Abstract:
The present paper investigates the use of linking adverbials between native male speakers and female speakers in their presentation. From previous studies, overuse of linking adverbials may be an indicator of the low proficiency level in English. In this study, female speakers are found to use more linking adverbials in general. However, the overuse of linking adverbials found in female speakers’ speeches does not imply female speakers’ lower English proficiency, but imply different approaches that male and female speakers adopt in dealing with their presentation tasks. Female speakers are found to be more interactional, leading to their more uses of interactive devices in the presenting process. On the other hand, male speakers take different approaches in dealing with their tasks. Male speakers try to be authoritative and amicable at the same time, resulting in the uses of both interactive devices and distancing devices in their speeches. The paper specifically presents and compares the use of the linking adverbial items, actually and so, in male speakers’ and female speakers’ speeches.Keywords: LAs, linking adverbial, low proficiency, overuse
Procedia PDF Downloads 3137393 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction
Procedia PDF Downloads 1617392 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction
Authors: Mikhail Gritskevich, Sebastian Hohenstein
Abstract:
The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer
Procedia PDF Downloads 4207391 State of Art in Software Requirement Negotiation Process Models
Authors: Shamsu Abdullahi, Nazir Yusuf, Hazrina Sofian, Abubakar Zakari, Amina Nura, Salisu Suleiman
Abstract:
Requirements negotiation process models help in resolving conflicting requirements of the heterogeneous stakeholders in the software development industry. This is to achieve a shared vision of software projects to be developed by the industry. Negotiating stakeholder agreements is a serious and difficult task in the software development process. There are many requirements negotiation process models that effectively negotiate stakeholder agreements that have been proposed by the research community. Other issues in the requirements negotiation research domain include stakeholder communication, decision-making, lack of negotiation interoperability, and managing requirement changes and analysis. This study highlights the current state of the art in the existing software requirements negotiation process models. The study also describes the issues and limitations in the software requirements negotiations process models.Keywords: requirements, negotiation, stakeholders, agreements
Procedia PDF Downloads 1997390 Harmonising the Circular Economy: An Analysis of 160 Papers
Authors: M. Novak, J. Dufourmount, D. Wildi, A. Sutherland, L. Sosa, J. Zimmer, E. Szabo
Abstract:
The circular economy has grounded itself amongst scholars and practitioners operating across governments and enterprises. The aim of this paper is to augment the circular economy concept by identifying common core and enabling circular business models. To this aim, we have analysed over 150 papers regarding circular activities and identified 8 clusters of business models and enablers. We have mapped and harmonised the most prominent frameworks conceptualising the circular economy. Our findings indicate that circular economy core business models include regenerative in addition to reduce, reuse and recycle activities. We further find enabling activities in design, digital technologies, knowledge development and sharing, multistakeholder collaborations, and extended corporate responsibility initiatives in various forms. We critically contrast the application of these business models across the European and African contexts. Overall, we find that seemingly varied circular economy definitions distill the same conceptual business models. We hope to contribute towards the coherence of the circular economy concept, and the continuous development of practical guidance to select and implement circular strategies.Keywords: Circular economy, content analysis, business models, definitions, enablers, frameworks
Procedia PDF Downloads 2267389 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools
Procedia PDF Downloads 2617388 Coronavirus Academic Paper Sorting Application
Authors: Christina A. van Hal, Xiaoqian Jiang, Luyao Chen, Yan Chu, Robert D. Jolly, Yaobin Lin, Jitian Zhao, Kang Lin Hsieh
Abstract:
The COVID-19 Literature Summary App was created for the primary purpose of enabling academicians and clinicians to quickly sort through the vast array of recent coronavirus publications by topics of interest. Multiple methods of summarizing and sorting the manuscripts were created. A summary page introduces the application function and capabilities, while an interactive map provides daily updates on infection, death, and recovery rates. A page with a pivot table allows publication sorting by topic, with an interactive data table that allows sorting topics by columns, as wells as the capability to view abstracts. Additionally, publications may be sorted by the medical topics they cover. We used the CORD-19 database to compile lists of publications. The data table can sort binary variables, allowing the user to pick desired publication topics, such as papers that describe COVID-19 symptoms. The application is primarily designed for use by researchers but can be used by anybody who wants a faster and more efficient means of locating papers of interest.Keywords: COVID-19, literature summary, information retrieval, Snorkel
Procedia PDF Downloads 1527387 Linking Business Process Models and System Models Based on Business Process Modelling
Authors: Faisal A. Aburub
Abstract:
Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.Keywords: business process modelling, system models, role activity diagrams, sequence diagrams
Procedia PDF Downloads 3867386 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models
Authors: Ozan Kahraman, Hao Feng
Abstract:
Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7
Procedia PDF Downloads 3667385 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 437384 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History
Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu
Abstract:
Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation
Procedia PDF Downloads 2417383 Economics in Primary Schools – Positive Education and Well-being
Authors: Judit Nagy
Abstract:
Many scientific studies claim that financial education should start as early as possible. Children are much more capable of and willing to absorb new concepts than adults. If we introduce children to financial knowledge early, their behaviour and attitudes to this subject will change, increasing later success in this area of life. However, poor financial decisions may entail severe consequences, not only to individuals but even to the wider society. Good financial decisions and economic attitudes may contribute to economic growth and well-being. Whilst in several countries, education about financial awareness and fundamentals is available, the understanding and acquisition of complex economic knowledge and the development of children’s independent problem-solving skills are still lacking. The results suggest that teaching economic and financial knowledge through accounting and making lectures interactive by using special tools of positive education is critical to stimulating children’s interest. Eighty percent of the students in the study liked the combined and interactive lecture. Introducing this kind of knowledge to individuals is a relevant objective, even at the societal level.Keywords: positive psychology, education innovation, primary school, gender, economics, accounting, finance, personal finance, mathematics, economic growth, well-being, sustainability
Procedia PDF Downloads 1047382 Compromising Relevance for Elegance: A Danger of Dominant Growth Models for Backward Economies
Authors: Givi Kupatadze
Abstract:
Backward economies are facing a challenge of achieving sustainable high economic growth rate. Dominant growth models represent a roadmap in framing economic development strategy. This paper examines a relevance of the dominant growth models for backward economies. Cobb-Douglas production function, the Harrod-Domar model of economic growth, the Solow growth model and general formula of gross domestic product are examined to undertake a comprehensive study of the dominant growth models. Deductive research method allows to uncover major weaknesses of the dominant growth models and to come up with practical implications for economic development strategy. The key finding of the paper shows, contrary to what used to be taught by textbooks of economics, that constant returns to scale property of the dominant growth models are a mere coincidence and its generalization over space and time can be regarded as one of the most unfortunate mistakes in the whole field of political economy. The major suggestion of the paper for backward economies is that understanding and considering taxonomy of economic activities based on increasing and diminishing returns to scale represent a cornerstone of successful economic development strategy.Keywords: backward economies, constant returns to scale, dominant growth models, taxonomy of economic activities
Procedia PDF Downloads 3767381 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 837380 On Bianchi Type Cosmological Models in Lyra’s Geometry
Authors: R. K. Dubey
Abstract:
Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.Keywords: Bianchi type-I cosmological model, variable gravitational coupling, cosmological constant term, Lyra's model
Procedia PDF Downloads 3557379 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 1717378 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach
Authors: Adeep Hande, Shubham Agarwal
Abstract:
This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.Keywords: large language models, semi-supervised learning, sexism detection, data sparsity
Procedia PDF Downloads 707377 Models of Innovation Processes and Their Evolution: A Literature Review
Authors: Maier Dorin, Maier Andreea
Abstract:
Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.Keywords: innovation, innovation process, business success, models of innovation
Procedia PDF Downloads 4027376 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models
Authors: Tejush Badal, Sanaa Alwidian
Abstract:
Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.Keywords: analysis, class diagram, model family, unified modeling language, union model
Procedia PDF Downloads 767375 Applying Business Model Patterns: A Case Study in Latin American Building Industry
Authors: James Alberto Ortega Morales, Nelson Andrés Martínez Marín
Abstract:
The bulding industry is one of the most important sectors all around the world in terms of contribution to index like GDP and labor. On the other hand, it is a major contributor to Greenhouse Gases (GHG) and waste generation contributing to global warming. In this sense, it is necessary to establish sustainable practices both from the strategic point of view to the operations point of view as well in all business and industries. Business models don’t scape to this reality attending it´s mediator role between strategy and operations. Business models can turn from the traditional practices searching economic benefits to sustainable bussines models that generate both economic value and value for society and the environment. Recent advances in the analysis of sustainable business models find different classifications that allow finding potential triple bottom line (economic, social and environmental) solutions applicable in every business sector. Into the metioned Advances have been identified, 11 groups and 45 patterns of sustainable business models have been identified; such patterns can be found either in the business models as a whole or found concurrently in their components. This article presents the analysis of a case study, seeking to identify the components and elements that are part of it, using the ECO CANVAS conceptual model. The case study allows showing the concurrent existence of different patterns of business models for sustainability empirically, serving as an example and inspiration for other Latin American companies interested in integrating sustainability into their new and existing business models.Keywords: sustainable business models, business sustainability, business model patterns, case study, construction industry
Procedia PDF Downloads 1147374 Volatility Model with Markov Regime Switching to Forecast Baht/USD
Authors: Nop Sopipan
Abstract:
In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.Keywords: volatility, Markov Regime Switching, forecasting, Baht/USD
Procedia PDF Downloads 3027373 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 237372 Use of Cyber-Physical Devices for the Implementation of Virtual and Augmented Realities in Bridge Construction
Authors: Muhammmad Fawad
Abstract:
The bridge construction industry has been revolutionized by the applications of Virtual Reality (VR) and Augmented Reality (AR). In this article, the author has focused on the field applications of digital technologies in structural, especially in bridge engineering. This research analyzed the use of VR/AR for the assessment of bridge concepts. For this purpose, the author has used Cyber-Physical Devices, i.e., Oculus Quest (OQ) for the implementation of VR, Trimble Microsoft HoloLens (THL), and Trimble Site Vision (TSV) for the implementation of AR/MR by visualizing the models of bridge planned to be constructed in Poland. The visualization of the models in Extended Reality (XR) is based on the development of BIM models of the bridge, which are further uploaded to the platforms required to implement these models in XR. This research helped to implement the models in MR so a bridge with a 1:1 scale at the exact location was placed, and authorities were presented with the possibility to visualize the exact scale and location of the bridge before its construction.Keywords: augmented reality, virtual reality, HoloLens, BIM, bridges
Procedia PDF Downloads 1237371 Public Spending and Economic Growth: An Empirical Analysis of Developed Countries
Authors: Bernur Acikgoz
Abstract:
The purpose of this paper is to investigate the effects of public spending on economic growth and examine the sources of economic growth in developed countries since the 1990s. This paper analyses whether public spending effect on economic growth based on Cobb-Douglas Production Function with the two econometric models with Autoregressive Distributed Lag (ARDL) and Dynamic Fixed Effect (DFE) for 21 developed countries (high-income OECD countries), over the period 1990-2013. Our models results are parallel to each other and the models support that public spending has an important role for economic growth. This result is accurate with theories and previous empirical studies.Keywords: public spending, economic growth, panel data, ARDL models
Procedia PDF Downloads 3717370 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy
Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.
Abstract:
Background: Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality
Procedia PDF Downloads 397369 A Survey of Digital Health Companies: Opportunities and Business Model Challenges
Authors: Iris Xiaohong Quan
Abstract:
The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.Keywords: digital health, business models, entrepreneurship opportunities, healthcare
Procedia PDF Downloads 1847368 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds
Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott
Abstract:
Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 3727367 Volatility Switching between Two Regimes
Authors: Josip Visković, Josip Arnerić, Ante Rozga
Abstract:
Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modelling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.Keywords: central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities
Procedia PDF Downloads 2287366 Domestic Remittances, Household Enterprises, and Household Well-being in Ghana
Authors: Abdul-Majeed Imoro
Abstract:
This paper investigates the interactive effect of domestic remittances and household enterprises on household well-being in Ghana. The study employs data drawn from the seventh wave of the Ghana Living Standard Survey (GLSS 7) comprising 14,009 households located in 1,000 enumeration areas for the 2016/2017 period. This study employs the Ordinary Least Square (OLS) regression technique in estimating the interactive effect of domestic remittances and household enterprises on household well-being. The Linear Probability Model (LPM) is used to estimate the impact of domestic remittances on household enterprises. A Two-Stage Least Square (2SLS) model is employed to solve endogeneity issues between the dependent variable and the explanatory variable. This study reveals the following findings: domestic remittances improve household well-being significantly. Also, there is a significant negative impact of domestic remittances on household enterprises. This implies that households that receive domestic remittances are less likely to engage in household enterprises. Finally, the 2SLS results show a significant and positive impact of the interaction between domestic remittances and household enterprises on household well-being. This study provides empirical evidence of why policymakers need to encourage households that receive domestic remittances to diversify their income sources and invest in other income-generating activities such as household enterprises.Keywords: domestic remittances, household enterprises, household well-being, Ghana
Procedia PDF Downloads 247365 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 139