Search results for: handwritten word recognition
2216 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1922215 Differences in Assessing Hand-Written and Typed Student Exams: A Corpus-Linguistic Study
Authors: Jutta Ransmayr
Abstract:
The digital age has long arrived at Austrian schools, so both society and educationalists demand that digital means should be integrated accordingly to day-to-day school routines. Therefore, the Austrian school-leaving exam (A-levels) can now be written either by hand or by using a computer. However, the choice of writing medium (pen and paper or computer) for written examination papers, which are considered 'high-stakes' exams, raises a number of questions that have not yet been adequately investigated and answered until recently, such as: What effects do the different conditions of text production in the written German A-levels have on the component of normative linguistic accuracy? How do the spelling skills of German A-level papers written with a pen differ from those that the students wrote on the computer? And how is the teacher's assessment related to this? Which practical desiderata for German didactics can be derived from this? In a trilateral pilot project of the Austrian Center for Digital Humanities (ACDH) of the Austrian Academy of Sciences and the University of Vienna in cooperation with the Austrian Ministry of Education and the Council for German Orthography, these questions were investigated. A representative Austrian learner corpus, consisting of around 530 German A-level papers from all over Austria (pen and computer written), was set up in order to subject it to a quantitative (corpus-linguistic and statistical) and qualitative investigation with regard to the spelling and punctuation performance of the high school graduates and the differences between pen- and computer-written papers and their assessments. Relevant studies are currently available mainly from the Anglophone world. These have shown that writing on the computer increases the motivation to write, has positive effects on the length of the text, and, in some cases, also on the quality of the text. Depending on the writing situation and other technical aids, better results in terms of spelling and punctuation could also be found in the computer-written texts as compared to the handwritten ones. Studies also point towards a tendency among teachers to rate handwritten texts better than computer-written texts. In this paper, the first comparable results from the German-speaking area are to be presented. Research results have shown that, on the one hand, there are significant differences between handwritten and computer-written work with regard to performance in orthography and punctuation. On the other hand, the corpus linguistic investigation and the subsequent statistical analysis made it clear that not only the teachers' assessments of the students’ spelling performance vary enormously but also the overall assessments of the exam papers – the factor of the production medium (pen and paper or computer) also seems to play a decisive role.Keywords: exam paper assessment, pen and paper or computer, learner corpora, linguistics
Procedia PDF Downloads 1712214 Occasional Word-Formation in Postfeminist Fiction: Cognitive Approach
Authors: Kateryna Nykytchenko
Abstract:
Modern fiction and non-fiction writers commonly use their own lexical and stylistic devices to capture a reader’s attention and bring certain thoughts and feelings to his reader. Among such devices is the appearance of one of the neologic notions – individual author’s formations: occasionalisms or nonce words. To a significant extent, the host of examples of new words occurs in chick lit genre which has experienced exponential growth in recent years. Chick Lit is a new-millennial postfeminist fiction which focuses primarily on twenty- to thirtysomething middle-class women. It brings into focus the image of 'a new woman' of the 21st century who is always fallible, funny. This paper aims to investigate different types of occasional word-formation which reflect cognitive mechanisms of conveying women’s perception of the world. Chick lit novels of Irish author Marian Keyes present genuinely innovative mixture of forms, both literary and nonliterary which is displayed in different types of occasional word-formation processes such as blending, compounding, creative respelling, etc. Crossing existing mental and linguistic boundaries, adopting herself to new and overlapping linguistic spaces, chick lit author creates new words which demonstrate the result of development and progress of language and the relationship between language, thought and new reality, ultimately resulting in hybrid word-formation (e.g. affixation or pseudoborrowing). Moreover, this article attempts to present the main characteristics of chick-lit fiction genre with the help of the Marian Keyes’s novels and their influence on occasionalisms. There has been a lack of research concerning cognitive nature of occasionalisms. The current paper intends to account for occasional word-formation as a set of interconnected cognitive mechanisms, operations and procedures meld together to create a new word. The results of the generalized analysis solidify arguments that the kind of new knowledge an occasionalism manifests is inextricably linked with cognitive procedure underlying it, which results in corresponding type of word-formation processes. In addition, the findings of the study reveal that the necessity of creating occasionalisms in postmodern fiction novels arises from the need to write in a new way keeping up with a perpetually developing world, and thus the evolution of the speaker herself and her perception of the world.Keywords: Chick Lit, occasionalism, occasional word-formation, cognitive linguistics
Procedia PDF Downloads 1822213 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax
Procedia PDF Downloads 1482212 Hand Gesture Recognition Interface Based on IR Camera
Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung
Abstract:
Vision based user interfaces to control TVs and PCs have the advantage of being able to perform natural control without being limited to a specific device. Accordingly, various studies on hand gesture recognition using RGB cameras or depth cameras have been conducted. However, such cameras have the disadvantage of lacking in accuracy or the construction cost being large. The proposed method uses a low cost IR camera to accurately differentiate between the hand and the background. Also, complicated learning and template matching methodologies are not used, and the correlation between the fingertips extracted through curvatures is utilized to recognize Click and Move gestures.Keywords: recognition, hand gestures, infrared camera, RGB cameras
Procedia PDF Downloads 4072211 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 152210 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 3752209 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1642208 Recognition and Enforcement of International Commercial Arbitral Awards in Sri Lanka, A Lesson from Singapore
Authors: Kahandawala Arachchige Thani Chathurika Kahandawala
Abstract:
This research is attempted to analyse, Sri Lanka’s current situation regarding the recognition and enforcement of international commercial arbitration awards. Sri Lanka has been involved with commercial arbitration for a long time period. But there are good and bad legal practices in place in proceedings in Sri Lanka legal system. The common perception and reality of Sri Lanka’s arbitration law and practices regarding recognition and enforcement of international arbitral awards is far behind the international standards. Therefore arbitration as a dispute resolution method has become a time-consuming and costly method in Sri Lanka. This research is employed with the qualitative method based on both primary and secondary resources. This carried out the comparative analysis of recognition and enforcement in international arbitration laws established jurisdiction in Singapore and the United Kingdom, which are known as best counties as a seat of arbitration in Asia and Europe. International conventions, act and all the legal proceedings regarding recognition and enforcement of an international arbitral award in Sri Lanka are going to be discussed in the research. In the Jurisdiction of Sri Lanka, critically need to value an international arbitral award in the domestic legal system. Therefore an award has to be recognised in Sri Lanka. Otherwise, it doesn’t have any value. After recognizing it, court can enforce it. This research intends to provide a comparative analysis to overcome the drawbacks.Keywords: arbitration, alternative dispute method, recognition and enforcement, foreign arbitral awards, Sri Lankan legal system, arbitral award in Singapore
Procedia PDF Downloads 1712207 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories
Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad
Abstract:
Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.Keywords: colour recognition pen, colour spectrum, dental laboratory, denture
Procedia PDF Downloads 1982206 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1572205 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor
Authors: Jadisha Cornejo, Helio Pedrini
Abstract:
Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks
Procedia PDF Downloads 1832204 The Lexical Eidos as an Invariant of a Polysemantic Word
Authors: S. Pesina, T. Solonchak
Abstract:
Phenomenological analysis is not based on natural language, but ideal language which is able to be a carrier of ideal meanings – eidos representing typical structures or essences. For this purpose, it’s necessary to release from the spatio-temporal definiteness of a subject and then state its noetic essence (eidos) by means of free fantasy generation. Herewith, as if a totally new objectness is created - the universal, confirming the thesis that thinking process takes place in generalizations passing by numerous means through the specific to the general and from the general through the specific to the singular.Keywords: lexical eidos, phenomenology, noema, polysemantic word, semantic core
Procedia PDF Downloads 2772203 Formation of Clipped Forms in Hausa Language
Authors: Maryam Maimota Shehu
Abstract:
Words are the basic building blocks of a language. In everyday usage of a language, words are used, and new words are formed and reformed in order to contain and accommodate all entities, phenomena, qualities and every aspect of the entire life. Despite the fact that many studies have been conducted on morphological processes in Hausa language. Most of the works concentrated on borrowing, affixation, reduplication and derivation, but clipping has been neglected to the extent that only a few scholars sited some examples in the language. Therefore, the current study investigates and examines clipping as one of the word formation processes fully found in the language. The study focuses its main attention on clipping as a word-formation process and how this process is used adequately in the formation of words and their occurrence in Hausa sentences. In order to achieve the aims, the research answered these questions: 1) is clipping used as process of word formation in Hausa? 2) What are the words formed using this process? This study utilizes the Natural Morphology Theory proposed by Dressler, (1985) which was adopted by belly (2007). The data of this study have been collected from newspaper articles, novels, and written literature of Hausa language. Based on the findings, this study found out that, there exist many kinds of words formed in Hausa language using clipping in sentence and discuss, which previous findings did not either reveals, or explain in detail. Other part of the finding shows that clipping in Hausa language occurs on nouns, verbs, adjectives, reduplicated words and compounds while retains their meanings and grammatical classes.Keywords: clipping, Hausa language, morphology, word formation processes
Procedia PDF Downloads 4762202 Proposed Solutions Based on Affective Computing
Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla
Abstract:
A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition
Procedia PDF Downloads 3692201 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6692200 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3822199 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 2602198 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model
Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud
Abstract:
Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.Keywords: HMM, K-Means, Sobel, accuracy, face recognition
Procedia PDF Downloads 3342197 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 5002196 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 662195 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 2192194 The Use of Videos: Effects on Children's Language and Literacy Skills
Authors: Rahimah Saimin
Abstract:
Previous research has shown that young children can learn from educational television programmes, videos or other technological media. However, the blending of any of these with traditional printed-based text appears to be omitted. Repeated viewing is an important factor in children's ability to comprehend the content or plot. The present study combined videos with traditional printed-based text and required repeated viewing and is original and distinctive. The first study was a pilot study to explore whether the intervention is implementable in ordinary classrooms. The second study explored whether the curricular embedding is important or whether the video with curricular embedding is effective. The third study explored the effect of “dosage”, i.e. whether a longer/ more intense intervention has a proportionately greater effect on outcomes. Both measured outcomes (comprehension, word sounds, and early word recognition) and unmeasured outcomes (engagement to reading traditional printed-based texts or/and multimodal texts) were obtained from this study. Observation indicated degree of engagement in reading. The theoretical framework was multimodality theory combined with Piaget’s and Vygotsky’s learning theories. An experimental design was used with 4-5-year-old children in nursery schools and primary schools. Six links to video clips exploring non-fiction science content were provided to teachers. The first session is whole-class and subsequent sessions small-group. The teacher then engaged the children in dialogue using supplementary materials. About half of each class was selected randomly for pre-post assessments. Two assessments were used the British Picture Vocabulary Scale (BPVSIII) and the York Assessment of Reading for Comprehension (YARC): Early Reading. Different programme fidelity means were deployed- observations, teacher self-reports attendance logs and post-delivery interviews. Data collection is in progress and results will be available shortly. If this multiphase study show effectiveness in one or other application, then teachers will have other tools which they can use to enhance vocabulary, letter knowledge and word reading. This would be a valuable addition to their repertoire.Keywords: language skills, literacy skills, multimodality, video
Procedia PDF Downloads 3392193 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces
Authors: Shih-Yu Lo
Abstract:
Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.Keywords: gender stereotype, object recognition, signal detection theory, weapon
Procedia PDF Downloads 2102192 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 642191 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 4872190 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis
Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha
Abstract:
Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier
Procedia PDF Downloads 4672189 Using Synonymy in Translation of Hemingway’s 'A Farewell to Arms' from English into Albanian
Authors: Miranda Enesi, Helena Grillo Mukli
Abstract:
The English word-stock is extremely rich in synonyms which can be largely accounted for by the abundant borrowing. Translation problems encountered by translators in general are usually ‘transfer problems’. They face more difficulties in the interpretation of meaning from the source language text than lexical differences between languages. The aim of the study is to inspect the various strategies used in translating from English into Albanian specific words in the ‘A Farwell to arms’ novel. For this purpose, examples translated from English into Albanian were examined. The Albanian equivalents have shown that various strategies were used in order to overcome the problem of rendering words and expressions into the target language. Employed strategies were synonymy, modulation, transposition, calque and word for word translation. In addition, this paper shows that the strategy of translating using synonymy is mostly used. In this paper, an attempt is made to examine the nature of contextual synonymy in order to investigate its problematic nature regarding translation. Types of synonymy are analyzed and then examples from English and Albanian versions are provided to examine the overlap between them.Keywords: equivalence, literal translation, paraphrasing, transfer problems, synonymy
Procedia PDF Downloads 1752188 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1532187 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information
Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script which is a series of texts including directions and dialogues. The other is blogposts which possesses relatively abstracted contents, stories and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. In order to improve the quality of topics, it needs a method to consider the word difference. In this paper, we introduce a semantic vocabulary expansion method to solve the word difference. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can learn more salient topics for broadcasting contents.Keywords: broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec
Procedia PDF Downloads 251