Search results for: generalized estimating equations
2878 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria
Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui
Abstract:
The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration
Procedia PDF Downloads 4172877 Solving SPDEs by Least Squares Method
Authors: Hassan Manouzi
Abstract:
We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: least squares, wick product, SPDEs, finite element, wiener chaos expansion, gradient method
Procedia PDF Downloads 4162876 Dynamic Behavior of Brain Tissue under Transient Loading
Authors: Y. J. Zhou, G. Lu
Abstract:
In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury
Procedia PDF Downloads 2662875 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3932874 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals
Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail
Abstract:
A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.Keywords: array signal processing, direction-of-arrival, antenna arrays, Eigenvalues, Eigenvectors, Lagrange multiplier
Procedia PDF Downloads 3322873 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians
Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah
Abstract:
Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio
Procedia PDF Downloads 1832872 Cubical Representation of Prime and Essential Prime Implicants of Boolean Functions
Authors: Saurabh Rawat, Anushree Sah
Abstract:
K Maps are generally and ideally, thought to be simplest form for obtaining solution of Boolean equations. Cubical Representation of Boolean equations is an alternate pick to incur a solution, otherwise to be meted out with Truth Tables, Boolean Laws, and different traits of Karnaugh Maps. Largest possible k- cubes that exist for a given function are equivalent to its prime implicants. A technique of minimization of Logic functions is tried to be achieved through cubical methods. The main purpose is to make aware and utilise the advantages of cubical techniques in minimization of Logic functions. All this is done with an aim to achieve minimal cost solution.rKeywords: K-maps, don’t care conditions, Boolean equations, cubes
Procedia PDF Downloads 3832871 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach
Authors: Maali Kachouri, Anis Jarboui
Abstract:
We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance
Procedia PDF Downloads 3512870 Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium
Authors: M. Shaban, A. Alibeigloo
Abstract:
This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio.Keywords: carbon nanotubes, embedded, nonlocal, free vibration
Procedia PDF Downloads 4492869 Singularity Theory in Yakam Matrix by Multiparameter Bifurcation Interfacial in Coupled Problem
Authors: Leonard Kabeya Mukeba Yakasham
Abstract:
The theoretical machinery from singularity theory introduced by Glolubitsky, Stewart, and Schaeffer, to study equivariant bifurcation problem is completed and expanded wile generalized to the multiparameter context. In this setting the finite deterinancy theorem or normal forms, the stability of equivariant bifurcation problem, and the structural stability of universal unfolding are discussed. With Yakam Matrix the solutions are limited for some partial differential equations stochastic nonlinear of the open questions in singularity artificial intelligence for future.Keywords: equivariant bifurcation, symmetry singularity, equivariant jets and transversality; normal forms, universal unfolding instability, structural stability, artificial intelligence, pdens, yakam matrix
Procedia PDF Downloads 222868 A Study of Closed Sets and Maps with Ideals
Authors: Asha Gupta, Ramandeep Kaur
Abstract:
The purpose of this paper is to study a class of closed sets, called generalized pre-closed sets with respect to an ideal (briefly Igp-closed sets), which is an extension of generalized pre-closed sets in general topology. Then, by using these sets, the concepts of Igp- compact spaces along with some classes of maps like continuous and closed maps via ideals have been introduced and analogues of some known results for compact spaces, continuous maps and closed maps in general topology have been obtained.Keywords: ideal, gp-closed sets, gp-closed maps, gp-continuous maps
Procedia PDF Downloads 2212867 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment
Authors: Jonathan Heng, Yoong Cheah Huei
Abstract:
A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters
Procedia PDF Downloads 1782866 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids
Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin
Abstract:
In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena
Procedia PDF Downloads 2812865 Bound State Problems and Functional Differential Geometry
Authors: S. Srednyak
Abstract:
We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos
Procedia PDF Downloads 702864 Confidence Intervals for Quantiles in the Two-Parameter Exponential Distributions with Type II Censored Data
Authors: Ayman Baklizi
Abstract:
Based on type II censored data, we consider interval estimation of the quantiles of the two-parameter exponential distribution and the difference between the quantiles of two independent two-parameter exponential distributions. We derive asymptotic intervals, Bayesian, as well as intervals based on the generalized pivot variable. We also include some bootstrap intervals in our comparisons. The performance of these intervals is investigated in terms of their coverage probabilities and expected lengths.Keywords: asymptotic intervals, Bayes intervals, bootstrap, generalized pivot variables, two-parameter exponential distribution, quantiles
Procedia PDF Downloads 4112863 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1172862 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate
Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo
Abstract:
A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.Keywords: chemical reaction, MHD, double-diffusive, stretching plate
Procedia PDF Downloads 4072861 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 1472860 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon
Authors: Haniye Dehestani, Yadollah Ordokhani
Abstract:
In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration
Procedia PDF Downloads 1632859 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations
Authors: Daniil Karzanov
Abstract:
This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations
Procedia PDF Downloads 2042858 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 3452857 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 1412856 Second Order Analysis of Frames Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.Keywords: nonlinear, stability, buckling, modified newmark method
Procedia PDF Downloads 4232855 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 1422854 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 3352853 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 7392852 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type
Authors: Jorge Gonzalez Camus, Carlos Lizama
Abstract:
In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations
Procedia PDF Downloads 1542851 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations
Authors: Mohammad Vahedi Torshizi
Abstract:
In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.Keywords: bending stress, contact stress, plantary, mathematical equations
Procedia PDF Downloads 2872850 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1852849 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability
Procedia PDF Downloads 248