Search results for: fundus images
2221 Hit-Or-Miss Transform as a Tool for Similar Shape Detection
Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer
Abstract:
This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing
Procedia PDF Downloads 3372220 Electro-Thermal Imaging of Breast Phantom: An Experimental Study
Authors: H. Feza Carlak, N. G. Gencer
Abstract:
To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection
Procedia PDF Downloads 4302219 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 862218 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 982217 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3602216 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 1432215 A Study of Thai Tourists' Image towards Local Food in Phetchaburi, Thailand in Order to Promote Food Tourism
Authors: Pimrawee Rocharungsat
Abstract:
The study of Phetchaburi Local Food Image in order to Support Tourism aimed 1) to overview Phetchaburi tourism images; and 2) to clarify Phetchaburi local food image. Both quantitative and qualitative analysis were used in this study. Questionnaires were delivered to sample group of 1,489 tourists from 8 districts of Phetchaburi. Results were found that Phetchaburi local food image could be as tool for tourism promotion. Strong place images were within Phetchaburi center city (35%) and in the markets (34.50%). As for satisfaction of local food comparing in descending order of excellent level mean score were its eminence, identity, quality, taste, creativity, and sanitation. Results of prominent images of well-known local food of Phetchaburi were Thai custard dessert, other desserts, palm and sugar palm drink and rice in ice water. The results can be applied as promotional tools for future food tourism in Phetchaburi.Keywords: food tourism, image, tourist, Phetchaburi province
Procedia PDF Downloads 2112214 Aesthetic and Social Vision in Abubakar Gimba’s a Toast in the Cemetery
Authors: James Funsho Tope
Abstract:
Being the prolific writer that he is, Gimba’s collection of Short Stories, A Toast in the Cemetery, brings out the themes of decay and corruption in the urban setting through the use of images, symbols, setting and character. Gimba seeks through these media to reveal the decay and corruption in the society. Gimba uses aesthetics to convey his message, thus making a call for change in the fabrics of society.Keywords: corruption, decay, character, setting, symbolism, images, society
Procedia PDF Downloads 6112213 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points
Authors: Nougrara Zineb
Abstract:
The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.Keywords: fovea, optic disc, registration, retinal images
Procedia PDF Downloads 2692212 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images
Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig
Abstract:
With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis
Procedia PDF Downloads 3622211 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection
Procedia PDF Downloads 1392210 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 862209 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 862208 Tumor Detection of Cerebral MRI by Multifractal Analysis
Authors: S. Oudjemia, F. Alim, S. Seddiki
Abstract:
This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor
Procedia PDF Downloads 4442207 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.Keywords: 3D models, environment, matching, pleiades
Procedia PDF Downloads 3332206 ‘Saying’ the Nuclear Power in France: Evolution of the Images and Perceptions of a Sensitive Theme
Authors: Jandot Aurélia
Abstract:
As the nuclear power is a sensitive field leading to controversy, the quality of the communication about it is important. Between 1965 and 1981, in France, this one had gradually changed. This change is studied here in the main French news magazine L’Express, in connection with several parameters. As this represents a huge number of copies and occurrences, thus a considerable amount of information; this paper is focused on the main articles as well as the main “mental images”. These ones are important, as their aim is to direct the thought of the readers, and as they have led the public awareness to evolve. Over this 17 years, two trends are in confrontation: The first one is promoting the perception of the nuclear power, while the second one is discrediting it. These trends are organized in two axes: the evolution of engineering, and the risks. In both cases, the changes in the language allow discerning the deepest intentions of the magazine editing, over a period when the nuclear technology, to there a laboratory object accompanied with mystery and secret, has become a social issue seemingly open to all.Keywords: French news magazine, mental images, nuclear power, public awareness
Procedia PDF Downloads 3102205 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 4102204 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization
Procedia PDF Downloads 1392203 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs
Authors: Josef Slapal
Abstract:
Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency
Procedia PDF Downloads 3832202 Distinct Method to Measure the Quality of 2D Image Compression Techniques
Authors: Mohammed H. Rasheed, Hussein Nadhem Fadhel, Mohammed M. Siddeq
Abstract:
In this paper, we introduced tools for evaluating image quality that effectively aligns with human perception, emphasizing their usefulness in assessing the visual quality of images. These tools offer quantitative metrics to facilitate the comparison of various image compression algorithms. Specifically, we propose two metrics designed to measure the quality of decompressed images. These metrics utilize combined data (CD) derived from both the original and decompressed images to deliver accurate assessments. By comparing the results of our proposed metrics with widely used standards such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE), we demonstrate that our approach provides a closer match to human visual perception of image quality. This alignment underscores the practical application of the proposed metrics in scenarios requiring subjective evaluation accuracy.Keywords: RMSE, PSNR, image quality metrics, image compression
Procedia PDF Downloads 352201 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery
Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok
Abstract:
Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.Keywords: contrast sensitivity, pterygium, redness, visual acuity
Procedia PDF Downloads 5172200 Modeling and Tracking of Deformable Structures in Medical Images
Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan
Abstract:
This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images
Procedia PDF Downloads 3442199 The Visual Side of Islamophobia: A Social-Semiotic Analysis
Authors: Carmen Aguilera-Carnerero
Abstract:
Islamophobia, the unfounded hostility towards Muslims and Islam, has been deeply studied in the last decades from different perspectives ranging from anthropology, sociology, media studies, and linguistics. In the past few years, we have witnessed how the birth of social media has transformed formerly passive audiences into an active group that not only receives and digests information but also creates and comments publicly on any event of their interest. In this way, average citizens now have been entitled with the power of becoming potential opinion leaders. This rise of social media in the last years gave way to a different way of Islamophobia, the so called ‘cyberIslamophobia’. Considerably less attention, however, has been given to the study of islamophobic images that accompany the texts in social media. This paper attempts to analyse a corpus of 300 images of islamophobic nature taken from social media (from Twitter and Facebook) from the years 2014-2017 to see: a) how hate speech is visually constructed, b) how cyberislamophobia is articulated through images and whether there are differences/similarities between the textual and the visual elements, c) the impact of those images in the audience and their reaction to it and d) whether visual cyberislamophobia has undergone any process of permeating popular culture (for example, through memes) and its real impact. To carry out this task, we have used Critical Discourse Analysis as the most suitable theoretical framework that analyses and criticizes the dominant discourses that affect inequality, injustice, and oppression. The analysis of images was studied according to the theoretical framework provided by the visual framing theory and the visual design grammar to conclude that memes are subtle but very powerful tools to spread Islamophobia and foster hate speech under the guise of humour within popular culture.Keywords: cyberIslamophobia, visual grammar, social media, popular culture
Procedia PDF Downloads 1702198 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4082197 Osteoarthritis (OA): A Total Knee Replacement Surgery
Authors: Loveneet Kaur
Abstract:
Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR
Procedia PDF Downloads 562196 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media
Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca
Abstract:
Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks
Procedia PDF Downloads 2042195 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA
Authors: S. Saju, G. Thirugnanam
Abstract:
In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet
Procedia PDF Downloads 5302194 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites
Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov
Abstract:
A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.Keywords: analysis, modelling, thermal, voxel
Procedia PDF Downloads 2892193 Facility Detection from Image Using Mathematical Morphology
Authors: In-Geun Lim, Sung-Woong Ra
Abstract:
As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.Keywords: facility detection, satellite image, object, mathematical morphology
Procedia PDF Downloads 3842192 A Unique Immunization Card for Early Detection of Retinoblastoma
Authors: Hiranmoyee Das
Abstract:
Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.Keywords: retinoblastoma, immunization, unique, early
Procedia PDF Downloads 202