Search results for: difference-frequency generation
3171 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios
Authors: Nour Wehbe
Abstract:
The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach
Procedia PDF Downloads 2473170 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems
Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan
Abstract:
Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling
Procedia PDF Downloads 833169 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 4283168 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids
Authors: Sami M. Alshareef
Abstract:
The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.Keywords: machine learning, cyber-attacks, automatic generation control, smart grid
Procedia PDF Downloads 843167 Investigation of Solar Concentrator Prototypes under Tunisian Conditions
Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani
Abstract:
Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation
Procedia PDF Downloads 2523166 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 823165 Re-Os Application to Petroleum System: Implications from the Geochronology and Oil-Source Correlation of Duvernay Petroleum System, Western Canadian Sedimentary Basin
Authors: Junjie Liu, David Selby, Mark Obermajer, Andy Mort
Abstract:
The inaugural application of Re-Os dating, which is based on the beta decay of 187Re to 187Os with a long half-life of 41.577 ± 0.12 Byr and initially used for sulphide minerals and organic rich rocks, to petroleum systems was performed on bitumen of the Polaris Mississippi Valley Type Pb-Zn deposit, Canada. To further our understanding of the Re-Os system and its application to petroleum systems, here we present a study on Duvernay Petroleum System, Western Canadian Sedimentary Basin. The Late Devonian Duvernay Formation organic-rich shales are the only source of the petroleum system. The Duvernay shales reached maturation only during the Laramide Orogeny (80 – 35 Ma) and the generated oil migrated short distances into the interfingering Leduc reefs and overlying Nisku carbonates with no or little secondary alteration post oil-generation. Although very low in Re and Os, the asphaltenes of Duvernay-sourced Leduc and Nisku oils define a Laramide Re-Os age. In addition, the initial Os isotope compositions of the oil samples are similar to that of the Os isotope composition of the Duvernay Formation at the time of oil generation, but are very different to other oil-prone intervals of the basin, showing the ability of the Os isotope composition as an inorganic oil-source correlation tool. In summary, the ability of the Re-Os geochronometer to record the timing of oil generation and trace the source of an oil is confirmed in the Re-Os study of Duvernay Petroleum System.Keywords: Duvernay petroleum system, oil generation, oil-source correlation, Re-Os
Procedia PDF Downloads 3093164 Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan
Authors: Syed Bilawal Ali Shah
Abstract:
The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin.Keywords: Potwar Basin, Patala Shale, Rock-Eval pyrolysis, Indus Basin, VR %Ro
Procedia PDF Downloads 853163 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location
Procedia PDF Downloads 4833162 Millenial Muslim Women’s Views on Religious Identity and Religious Leaders: The Role of the State on Religious Issues and Religious Radicalism in Jakarta
Authors: Achmad Muchadam Fahham, Sony Hendra Permana
Abstract:
Millennial Muslims are a generation of young people between 20-30 years. They will play an important role in various aspects of life for the next 10 to 20 years. In Indonesia, the population of this generation is quite large and in the next ten to twenty years they will occupy strategic position in various fields of social, economic and political life. One of the characteristics of the millenials generation are always connected to the internet and independence to learn anything from the internet. In terms of religion, the majority of millennial are Muslim. In digital era, the generation of millenial Muslim is vulnerable to the influence of radical Islamic thinking because of their easy access to that thought on social media, new media, and the books they read. This study seeks to examine the religious views of millennial Muslim women in four main focuses, namely religious identity, religious leaders, the role of the state on religious issues, and religious radicalism. This study was conducted with a qualitative approach, the data collection was carried out by the interview method. The study was conducted in Jakarta, mainly in religious study groups located in several mosques and shopping center in Jakarta. This study is expected to portray the religious views of millennial Muslim women, especially their commitment to Islamic identity, their views on the authority of religious leaders, the role of the state in various religious problems, and religious radicalism.Keywords: millenial Muslims, radicalism, muslim mowen, religious identity
Procedia PDF Downloads 1493161 Analysis of Construction Waste Generation and Its Effect in a Construction Site
Authors: R. K. D. G. Kaluarachchi
Abstract:
The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.Keywords: construction-waste, effective management, reduce, reuse
Procedia PDF Downloads 1993160 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath
Abstract:
This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile
Procedia PDF Downloads 2333159 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 6033158 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 383157 Biofeedback-Driven Sound and Image Generation
Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez
Abstract:
BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology
Procedia PDF Downloads 713156 A Study of Generation Y's Career Attitude at Workplace
Authors: Supriadi Hardianto, Aditya Daniswara
Abstract:
Today's workplace, flooded by millennial Generation or known also as Generation Y. A common problem that faced by the company towards Gen Y is a high turnover rate, attitudes problem, communication style, and different work style than the older generation. This is common in private sector. The objective of this study is to get a better understanding of the Gen Y Career Attitude at the workplace. The subject of this study is focusing on 430 respondent of Gen Y which age between 20 – 35 years old who works for a private company. The Questionnaire as primary data source captured 9 aspects of career attitude based on Career Attitudes Strategy Inventory (CASI). This Survey distributes randomly among Gen Y in the IT Industry (125 Respondent) and Manufacture Company (305 Respondent). A Random deep interview was conducted to get the better understanding of the etiology of their primary obstacles. The study showed that most of Indonesia Gen Y have a moderate score on Job satisfaction but in the other aspects, Gen Y has the lowest score on Skill Development, Career Worries, Risk-Taking Style, Dominant Style, Work Involvement, Geographical Barrier, Interpersonal Abuse, and Family Commitment. The top 5 obstacles outside that 9 aspects that faced by Gen Y are 1. Lower communication & networking support; 2. Self-confidence issues; 3. Financial Problem; 4. Emotional issues; 5. Age. We also found that parent perspective toward the way they are nurturing their child are not aligned with their child’s real life. This research fundamentally helps the organization and other Gen Y’s Stakeholders to have a better understanding of Gen Y Career Attitude at the workplace.Keywords: career attitudes, CASI, Gen Y, career attitude at workplace
Procedia PDF Downloads 1573155 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 4413154 A Political-Economic Analysis of Next Generation EU Recovery Fund
Authors: Fernando Martín-Espejo, Christophe Crombez
Abstract:
This paper presents a political-economic analysis of the reforms introduced during the coronavirus crisis at the EU level with a special emphasis on the recovery fund Next Generation EU (NGEU). It also introduces a spatial model to evaluate whether the governmental features of the recovery fund can be framed inside the community method. Particularly, by evaluating the brake clause in the NGEU legislation, this paper analyses theoretically the political and legislative implications of the introduction of flexibility clauses in the EU decision-making process.Keywords: EU, legislative procedures, spatial model, coronavirus
Procedia PDF Downloads 1763153 Household Solid Waste Generation per Capita and Management Behaviour in Mthatha City, South Africa
Authors: Vuyayo Tsheleza, Simbarashe Ndhleve, Christopher Mpundu Musampa
Abstract:
Mismanagement of waste is continuously emerging as a rising malpractice in most developing countries, especially in fast growing cities. Household solid waste in Mthatha has been reported to be one of the problems facing the city and is overwhelming local authorities, as it is beyond the environment and management capacity of the existing waste management system. This study estimates per capita waste generation, quantity of different waste types generated by inhabitants of formal and informal settlements in Mthatha as well as waste management practices in the aforementioned socio-economic stratums. A total of 206 households were systematically selected for the study using stratified random sampling categorized into formal and informal settlements. Data on household waste generation rate, composition, awareness, and household waste management behaviour and practices was gathered through mixed methods. Sampled households from both formal and informal settlements with a total of 684 people generated 1949kg per week. This translates to 2.84kg per capita per week. On average, the rate of solid waste generation per capita was 0.40 kg per day for a person living in informal settlement and 0.56 kg per day person living in formal settlement. When recorded in descending order, the proportion food waste accounted for the most generated waste at approximately 23.7%, followed by disposable nappies at 15%, papers and cardboards 13.34%, glass 13.03%, metals at 11.99%, plastics at 11.58%, residue at 5.17, textiles 3.93%, with leather and rubber at 2.28% as the least generated waste type. Different waste management practices were reported in both formal and informal settlements with formal settlements proving to be more concerned about environmental management as compared to their counterparts, informal settlement. Understanding attitudes and perceptions on waste management, waste types and per capita solid waste generation rate can help evolve appropriate waste management strategies based on the principle of reduce, re-use, recycle, environmental sound disposal and also assist in projecting future waste generation rate. These results can be utilized as input when designing growing cities’ waste management plans.Keywords: awareness, characterisation, per capita, quantification
Procedia PDF Downloads 2983152 Apply Commitment Method in Power System to Minimize the Fuel Cost
Authors: Mohamed Shaban, Adel Yahya
Abstract:
The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollutionKeywords: unit commitment, forward dynamic, fuel cost, programming, generation scheduling, operation cost, power system, generating units
Procedia PDF Downloads 6083151 Solid Waste Characterization and Recycling Potential in Hawassa University, Ethiopia
Authors: Hunachew Beyene Mengesha, Biruck Desalegn Yirsaw
Abstract:
Owing to the dramatic expansion of universities in Ethiopia, understanding the composition and nature of solid waste at the source of generation plays an important role in designing a program for an integrated waste management program. In this study, we report the quantity, quality and recycling potential of the waste generated in the three campuses of the Hawassa University, Southern Ethiopia. A total of 3.5 tons of waste was generated per day in the three campuses of the university. More than 95% of the waste constituents were with potential to be recovered. It was a lesson from the study that there was no source reduction, recycling, composting, proper land filling or incineration practices in-place. The considerably high waste generation associated with the expansion of educational programs in the university appears worthwhile requiring implementation of programs for an integrated solid waste management to minimize health risk to humans and reduce environmental implications as a result of improper handling and disposal of wastes.Keywords: Hawassa University, integrated solid waste management, solid waste generation, energy management, waste management
Procedia PDF Downloads 3183150 Economical Transformer Selection Implementing Service Lifetime Cost
Authors: Bonginkosi A. Thango, Jacobus A. Jordaan, Agha F. Nnachi
Abstract:
In this day and age, there is a proliferate concern from all governments across the globe to barricade the environment from greenhouse gases, which absorb infrared radiation. As a result, solar photovoltaic (PV) electricity has been an expeditiously growing renewable energy source and will eventually undertake a prominent role in the global energy generation. The selection and purchasing of energy-efficient transformers that meet the operational requirements of the solar photovoltaic energy generation plants then become a part of the Independent Power Producers (IPP’s) investment plan of action. Taking these into account, this paper proposes a procedure that put into effect the intricate financial analysis necessitated to precisely evaluate the transformer service lifetime no-load and load loss factors. This procedure correctly set forth the transformer service lifetime loss factors as a result of a solar PV plant’s sporadic generation profile and related levelized costs of electricity into the computation of the transformer’s total ownership cost. The results are then critically compared with the conventional transformer total ownership cost unaccompanied by the emission costs, and demonstrate the significance of the sporadic energy generation nature of the solar PV plant on the total ownership cost. The findings indicate that the latter play a crucial role for developers and Independent Power Producers (IPP’s) in making the purchase decision during a tender bid where competing offers from different transformer manufactures are evaluated. Additionally, the susceptibility analysis of different factors engrossed in the transformer service lifetime cost is carried out; factors including the levelized cost of electricity, solar PV plant’s generation modes, and the loading profile are examined.Keywords: solar photovoltaic plant, transformer, total ownership cost, loss factors
Procedia PDF Downloads 1283149 Generation Z: Insights into Travel Behavior
Authors: Joao Ferreira Do Rosario, Nuno Gustavo, Ana Machado, Lurdes Calisto, Luisa Carvalho, Georgette Andraz
Abstract:
Currently, tourism small and medium enterprises (TSMEs) face serious economic and financial problems, making recovery efforts difficult. How the pandemic will affect tourists' behavior is still to be known. Will tourists be even more cautious regarding their choices or, on the contrary, will they be more adventurers with an enormous desire to travel in search of the lost freedom? Tourists may become even more demanding when traveling, more austere, or less concerned and eager to socialize. Adjusting to this "new tourist" is an added challenge for tourism service providers. Generation Z made up of individuals born in 1995 and following years, currently tends to assume a particular role and meaning in the present and future economic and social context, considering that we are facing the youngest workforce as well as tomorrow's consumers. This generation is distinguished from others as it is the first generation to combine a high level of education and technological knowledge and to fully experience the digital world. These young people are framed by a new value system that can explain new behaviours and consumption, namely, in the context of tourism. All these considerations point to the importance of investigating this target group as it is essential to understand how these individuals perceive, understand, act, and can be involved in a new environment built around a society regulated by new priorities and challenges of a sustainable nature. This leads not only to a focus on short-term market choices but mainly to predict future choices from a longer-term perspective. Together with the social background of a person, values are considered a stable antecedent of behavior and might therefore predict not just immediate, but also future choices. Furthermore, the meaning attributed to travel has a general connotation and goes beyond a specific travel choice or experience. In other words, values and travel's meaning form a chain of influences on the present and future travel behavior. This study explores the social background and values of Generation Z travelers vs the meaning these tourists give to travel. The aim is to discover in their present behavior cues to predict travel choices so that the future of tourism can be secured. This study also provides data for predicting the tourism choices of youngsters in the more immediate future. Methodologically, a quantitative approach was adopted based on the collection of data through a survey. Since academic research on Generation Z of tourists is still scarce, it is expected to contribute to deepening scientific knowledge in this area. Furthermore, it is expected that this research will support tourism professionals in defining differentiated marketing strategies and adapted to the requirements of this target, in a new time.Keywords: Generation Z, travel behavior, travel meaning, Generation Z Values
Procedia PDF Downloads 2223148 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 3883147 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance
Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian
Abstract:
Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation
Procedia PDF Downloads 1103146 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey
Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar
Abstract:
5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.Keywords: 5G, 5th generation, innovation, standard, wireless communication
Procedia PDF Downloads 4443145 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model
Authors: Jiachen Wang, Dongxu Ji
Abstract:
Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.Keywords: geothermal power generation, optimization, energy model, thermodynamics
Procedia PDF Downloads 653144 Review on Future Economic Potential Stems from Global Electronic Waste Generation and Sustainable Recycling Practices.
Authors: Shamim Ahsan
Abstract:
Abstract Global digital advances associated with consumer’s strong inclination for the state of art digital technologies is causing overwhelming social and environmental challenges for global community. During recent years not only economic advances of electronic industries has taken place at steadfast rate, also the generation of e-waste outshined the growth of any other types of wastes. The estimated global e-waste volume is expected to reach 65.4 million tons annually by 2017. Formal recycling practices in developed countries are stemming economic liability, opening paths for illegal trafficking to developing countries. Informal crude management of large volume of e-waste is transforming into an emergent environmental and health challenge in. Contrariwise, in several studies formal and informal recycling of e-waste has also exhibited potentials for economic returns both in developed and developing countries. Some research on China illustrated that from large volume of e-wastes generation there are recycling potential in evolving from ∼16 (10−22) billion US$ in 2010, to an anticipated ∼73.4 (44.5−103.4) billion US$ by 2030. While in another study, researcher found from an economic analysis of 14 common categories of waste electric and electronic equipment (WEEE) the overall worth is calculated as €2.15 billion to European markets, with a potential rise to €3.67 billion as volumes increase. These economic returns and environmental protection approaches are feasible only when sustainable policy options are embraced with stricter regulatory mechanism. This study will critically review current researches to stipulate how global e-waste generation and sustainable e-waste recycling practices demonstrate future economic development potential in terms of both quantity and processing capacity, also triggering complex some environmental challenges.Keywords: E-Waste, , Generation, , Economic Potential, Recycling
Procedia PDF Downloads 3033143 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems
Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo
Abstract:
Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation
Procedia PDF Downloads 923142 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 27