Search results for: data utilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26437

Search results for: data utilization

26227 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 288
26226 A Research on Determining the Viability of a Job Board Website for Refugees in Kenya

Authors: Prince Mugoya, Collins Oduor Ondiek, Patrick Kanyi Wamuyu

Abstract:

Refugee Job Board Website is a web-based application that provides a platform for organizations to post jobs specifically for refugees. Organizations upload job opportunities and refugees can view them on the website. The website also allows refugees to input their skills and qualifications. The methodology used to develop this system is a waterfall (traditional) methodology. Software development tools include Brackets which will be used to code the website and PhpMyAdmin to store all the data in a database.

Keywords: information technology, refugee, skills, utilization, economy, jobs

Procedia PDF Downloads 165
26225 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 69
26224 Efficient Utilization of Commodity Computers in Academic Institutes: A Cloud Computing Approach

Authors: Jasraj Meena, Malay Kumar, Manu Vardhan

Abstract:

Cloud computing is a new technology in industry and academia. The technology has grown and matured in last half decade and proven their significant role in changing environment of IT infrastructure where cloud services and resources are offered over the network. Cloud technology enables users to use services and resources without being concerned about the technical implications of technology. There are substantial research work has been performed for the usage of cloud computing in educational institutes and majority of them provides cloud services over high-end blade servers or other high-end CPUs. However, this paper proposes a new stack called “CiCKAStack” which provide cloud services over unutilized computing resources, named as commodity computers. “CiCKAStack” provides IaaS and PaaS using underlying commodity computers. This will not only increasing the utilization of existing computing resources but also provide organize file system, on demand computing resource and design and development environment.

Keywords: commodity computers, cloud-computing, KVM, CloudStack, AppScale

Procedia PDF Downloads 273
26223 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement

Authors: Hadi Ardiny, Amir Mohammad Beigzadeh

Abstract:

Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.

Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems

Procedia PDF Downloads 123
26222 Exploring the Gap between Coverage, Access, Utilization of Long Lasting Insecticidal Nets (LLINs) among the People of Malaria Endemic Districts in Bangladesh

Authors: Fouzia Khanam, Tridib Chowdhury, Belal Hossain, Sajedur Rahman, Mahfuzar Rahman

Abstract:

Introduction: Over the last decades, the world has achieved a noticeable success in preventing malaria. Nevertheless, malaria, a vector-borne infectious disease, remains a major public health burden globally as well as in Bangladesh. To achieve the goal of eliminating malaria, BRAC, a leading organization of Bangladesh in collaboration with government, is distributing free LLIN to the 13 endemic districts of the country. The study was conducted with the aim of assessing the gap between coverage, access, and utilization of LLIN among the people of the 13 malaria endemic districts of Bangladesh. Methods: This baseline study employed a community cross-sectional design triangulated with qualitative methods to measure households’ ownership, access and use of 13 endemic districts. A multistage cluster random sampling was employed for the quantitative part and for qualitative part a purposive sampling strategy was done. Thus present analysis included 2640 households encompassing a total of 14475 populations. Data were collected using a pre-tested structured questionnaire through one on one face-to-face interview with respondents. All analyses were performed using STATA (Version 13.0). For the qualitative part participant observation, in-depth interview, focus group discussion, key informant interview and informal interview was done to gather the contextual data. Findings: According to our study, 99.8% of households possessed at least one-bed net in both study areas. 77.4% households possessed at least two LLIN and 43.2% households had access to LLIN for all the members. So the gap between coverage and access is 34%. 91.8% people in the 13 districts and 95.1% in Chittagong Hill Tracts areas reported having had slept under a bed net the night before interviewed. And despite the relatively low access, in 77.8% of households, all the members were used the LLIN the previous night. This higher utilization compared to access might be due to the increased awareness among the community people regarding LLIN uses. However, among those people with sufficient access to LLIN, 6% of them still did not use the LLIN which reflects the behavioral failure that needs to be addressed. The major reasons for not using LLIN, identified by both qualitative and quantitative findings, were insufficient access, sleeping or living outside the home, migration, perceived low efficacy of LLIN, fear of physical side effects or feeling uncomfortable. Conclusion: Given that LLIN access and use was a bit short of the targets, it conveys important messages to the malaria control program. Targeting specific population segments and groups for achieving expected LLIN coverage is very crucial. And also, addressing behavior failure by well-designed behavioral change interventions is mandatory.

Keywords: long lasting insecticide net, malaria, malaria control programme, World Health Organisation

Procedia PDF Downloads 188
26221 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
26220 Assessment of Forage Utilization for Pasture-Based Livestock Production in Udubo Grazing Reserve, Bauchi State

Authors: Mustapha Saidu, Bilyaminu Mohammed

Abstract:

The study was conducted in Udubo Grazing Reserve between July 2019 and October 2019 to assess forage utilization for pasture-based livestock production in reserve. The grazing land was cross-divided into grids, where 15 coordinates were selected as the sample points. Grids of one-kilometer interval were made. The grids were systematically selected 1 grid after 7 grids. 1 × 1-meter quadrat was made at the coordinate of the selected grids for measurement, estimation, and sample collection. The results of the study indicated that Zornia glochidiatah has the highest percent of species composition (42%), while Mitracarpus hirtus has the lowest percent (0.1%). Urochloa mosambicensis has 48 percent of height removed and 27 percent used by weight, Zornia glochidiata 60 percent of height removed and 57 percent used by weight, Alysicapus veginalis has 55 percent of height removed, and 40 percent used by weight, and Cenchrus biflorus has 40 percent of height removed and 28 percent used by weight. The target is 50 percent utilization of forage by weight during a grazing period as well as at the end of the grazing season. The study found that Orochloa mosambicensis, Alysicarpus veginalis, and Cenchrus biflorus had lower percent by weight which is normal, while Zornia glochidiata had a higher percent by weight which is an indication of danger. The study recommends that the identification of key plant species in pasture and rangeland is critical to implementing a successful grazing management plan. There should be collective action and promotion of historically generated grazing knowledge through public and private advocacies.

Keywords: forage, grazing reserve, live stock, pasture, plant species

Procedia PDF Downloads 89
26219 Utilization of Juncus acutus as Alternative Feed Resource in Ruminants

Authors: Nurcan Cetinkaya

Abstract:

The aim of this paper is to bring about the utilization of Juncus acutus as an alternative roughage resource in ruminant nutrition. In Turkey, JA is prevailing plant of the natural grassland in Kizilirmak Delta, Samsun. Crude nutrient values such as crude protein (CP), ether extract (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin(ADL) including antioxidant activity, total phenolic and flavonoid compounds, total organic matter digestibility (OMD) and metabolisable energy (ME) values of Juncus acutus stem, seed, and also its mixture with maize silage were estimated. and published. Furthermore, the effects of JA over rumen cellulolitic bacteria were studied. The obtained results from different studies conducted on JA by our team show that Juncus acutus may be a new roughage source in ruminant nutrition.

Keywords: antioxidant activity, cellulolytic bacteria, Juncus acutus, organic matter digestibility

Procedia PDF Downloads 283
26218 Integrating Data Envelopment Analysis and Variance Inflation Factor to Measure the Efficiency of Decision Making Units

Authors: Mostafa Kazemi, Zahra N. Farkhani

Abstract:

This paper proposes an integrated Data Envelopment Analysis (DEA) and Variance Inflation Factor (VIF) model for measuring the technical efficiency of decision making units. The model is validated using a set of 69% sales representatives’ dairy products. The analysis is done in two stages, in the first stage, VIF technique is used to distinguish independent effective factors of resellers, and in the second stage we used DEA for measuring efficiency for both constant and variable return to scales status. Further DEA is used to examine the utilization of environmental factors on efficiency. Results of this paper indicated an average managerial efficiency of 83% in the whole sales representatives’ dairy products. In addition, technical and scale efficiency were counted 96% and 80% respectively. 38% of sales representative have the technical efficiency of 100% and 72% of the sales representative in terms of managerial efficiency are quite efficient.High levels of relative efficiency indicate a good condition for sales representative efficiency.

Keywords: data envelopment analysis (DEA), relative efficiency, sales representatives’ dairy products, variance inflation factor (VIF)

Procedia PDF Downloads 568
26217 Factors Affecting Attitude of Community Pharmacists Towards Locally Manufactured Pharmaceutical Products in Addisababa: A Cross-sectional Study

Authors: Gelila Tamyalew, Asres Abitie

Abstract:

Community Pharmacists (CPs) have a significant part in consumer choice in the rational use of LMPPs. The opinion of pharmacists regarding branded and generic medications can offer a perception of the potential obstacles that might have to be overcome to advance generic medicine utilization. Many factors affect CPs' attitudes negatively toward LMPPs. Therefore, the current study assessed factors that can affect CPs' attitudes toward LMPPs. In the regression analysis of variables, three variables were associated with CPs' attitudes toward LMPPs. These are; maximum educational status, professional status, and year of experience in community pharmacy practice. Moreover, lack of belief in LMPPs, substitution agreement with the prescriber, cost-effectiveness of LMPPs, and consumer preference/demand were the most influencing reasons for the selection of LMPPs. In conclusion, the attitude of CPs seems suboptimal that requires an intervention to optimize LMPP utilization.

Keywords: locally manufactured pharmaceutical products, attitude, community pharmacist, Ethiopia

Procedia PDF Downloads 84
26216 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model

Authors: Bokkasam Sasidhar, Ibrahim Aljasser

Abstract:

The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.

Keywords: scheduling, maximal flow problem, multiple arc network model, optimization

Procedia PDF Downloads 402
26215 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance

Procedia PDF Downloads 393
26214 Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake

Authors: Mohamed Abdullah Ahmed

Abstract:

In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products.

Keywords: chick bean protein isolate, sponge cake, utilization, sponge

Procedia PDF Downloads 366
26213 An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks

Authors: Mallikarjuna Rao Yamarthy, Subramanyam Makam Venkata, Satya Prasad Kodati

Abstract:

The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost.

Keywords: data delivery cost, mobility management, pointer forwarding, resource management, wireless mesh networks

Procedia PDF Downloads 367
26212 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: information retrieval, unified medical language system, syntax based analysis, natural language processing, medical informatics

Procedia PDF Downloads 133
26211 Quantum Cryptography: Classical Cryptography Algorithms’ Vulnerability State as Quantum Computing Advances

Authors: Tydra Preyear, Victor Clincy

Abstract:

Quantum computing presents many computational advantages over classical computing methods due to the utilization of quantum mechanics. The capability of this computing infrastructure poses threats to standard cryptographic systems such as RSA and AES, which are designed for classical computing environments. This paper discusses the impact that quantum computing has on cryptography, while focusing on the evolution from classical cryptographic concepts to quantum and post-quantum cryptographic concepts. Standard Cryptography is essential for securing data by utilizing encryption and decryption methods, and these methods face vulnerability problems due to the advancement of quantum computing. In order to counter these vulnerabilities, the methods that are proposed are quantum cryptography and post-quantum cryptography. Quantum cryptography uses principles such as the uncertainty principle and photon polarization in order to provide secure data transmission. In addition, the concept of Quantum key distribution is introduced to ensure more secure communication channels by distributing cryptographic keys. There is the emergence of post-quantum cryptography which is used for improving cryptographic algorithms in order to be more secure from attacks by classical and quantum computers. Throughout this exploration, the paper mentions the critical role of the advancement of cryptographic methods to keep data integrity and privacy safe from quantum computing concepts. Future research directions that would be discussed would be more effective cryptographic methods through the advancement of technology.

Keywords: quantum computing, quantum cryptography, cryptography, data integrity and privacy

Procedia PDF Downloads 26
26210 Designing Metal Organic Frameworks for Sustainable CO₂ Utilization

Authors: Matthew E. Potter, Daniel J. Stewart, Lindsay M. Armstrong, Pier J. A. Sazio, Robert R. Raja

Abstract:

Rising CO₂ levels in the atmosphere means that CO₂ is a highly desirable feedstock. This requires specific catalysts to be designed to activate this inert molecule, combining a catalytic site tailored for CO₂ transformations with a support that can readily adsorb CO₂. Metal organic frameworks (MOFs) are regularly used as CO₂ sorbents. The organic nature of the linker molecules, connecting the metal nodes, offers many post-synthesis modifications to introduce catalytic active sites into the frameworks. However, the metal nodes may be coordinatively unsaturated, allowing them to bind to organic moieties. Imidazoles have shown promise catalyzing the formation of cyclic carbonates from epoxides with CO₂. Typically, this synthesis route employs toxic reagents such as phosgene, liberating HCl. Therefore an alternative route with CO₂ is highly appealing. In this work we design active sites for CO₂ activation, by tethering substituted-imidazole organocatalytic species to the available Cr3+ metal nodes of a Cr-MIL-101 MOF, for the first time, to create a tailored species for carbon capture utilization applications. Our tailored design strategy combining a CO₂ sorbent, Cr-MIL-101, with an anchored imidazole results in a highly active and selective multifunctional catalyst, achieving turnover frequencies of over 750 hr-1. These findings demonstrate the synergy between the MOF framework and imidazoles for CO₂ utilization applications. Further, the effect of substrate variation has been explored yielding mechanistic insights into this process. Through characterization, we show that the structural and compositional integrity of the Cr-MIL-101 has been preserved on functionalizing the imidazoles. Further, we show the binding of the imidazoles to the Cr3+ metal nodes. This can be seen through our EPR study, where the distortion of the Cr3+ on binding to the imidazole shows the CO₂ binding site is close to the active imidazole. This has a synergistic effect, improving catalytic performance. We believe the combination of MOF support and organocatalyst allows many possibilities to generate new multifunctional catalysts for CO₂ utilisation. In conclusion, we have validated our design procedure, combining a known CO₂ sorbent, with an active imidazole species to create a unique tailored multifunctional catalyst for CO₂ utilization. This species achieves high activity and selectivity for the formation of cyclic carbonates and offers a sustainable alternative to traditional synthesis methods. This work represents a unique design strategy for CO₂ utilization while offering exciting possibilities for further work in characterization, computational modelling, and post-synthesis modification.

Keywords: carbonate, catalysis, MOF, utilisation

Procedia PDF Downloads 180
26209 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 265
26208 Exploring Social Impact of Emerging Technologies from Futuristic Data

Authors: Heeyeul Kwon, Yongtae Park

Abstract:

Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.

Keywords: emerging technologies, futuristic data, scenario, text mining

Procedia PDF Downloads 491
26207 Cloud Monitoring and Performance Optimization Ensuring High Availability

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy

Procedia PDF Downloads 60
26206 Bacillus licheniformis sp. nov. PS-6, an Arsenic Tolerance Bacterium with Biotransforming Potential Isolated from Sediments of Pichavaram Mangroves of South India

Authors: Padmanabhan D, Kavitha S

Abstract:

The purpose of the study is to investigate arsenic resistance ability of indigenous microflora and its ability to utilize arsenic species form containing water source. PS-6 potential arsenic tolerance bacterium was screened from thirty isolates from Pichavaram Mangroves of India having tolerance to grow up to 1000 mg/l of As (V) and 800 mg/l of As (III) and arsenic utilization ability of 98 % of As (V) and 97% of As (III) with initial concentration of 3-5 mg/l within 48 hrs. Optimum pH and temperature was found to be ~7-7.4 and 37°C. Active growth of PS-6 in minimal salt media (MSB) helps in cost effective biomass production. Dry weight analysis of PS-6 has shown significant difference in biomass when exposed to As (III) and As (V). Protein level study of PS-6 after exposing to As (V) and As (III) shown modification in total protein concentration and variation in SDS-PAGE pattern. PS-6 was identified as Bacillus licheniformis based on partially sequenced of 16S rRNA using NCBI Blast. Further investigation will help in using this potential bacterium as a well-grounded source for urgency.

Keywords: arsenite, arsenate, Bacillus licheniformis, utilization

Procedia PDF Downloads 405
26205 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 403
26204 Analyzing Factors Influencing Citizen Utilization and Adoption of E-Government Services in Saudi Arabia: A Citizen’s Perspective

Authors: Abdulqader Almasabe, Stephanie Ludi, Mohammed Alenazi

Abstract:

Governments around the world have been increasingly introducing e-government services in order to make processes more efficient and accessible for their citizens. The government of Saudi Arabia has adopted e-government for the effective delivery of services. However, the adoption rate of these services remains low in many countries. This paper aims to explore the determinants of citizens' intention to adopt and use e-government services, focusing on a model of factors influencing the adoption and utilization of e-government services (MFIAUEGS) that has been specially developed for this purpose. By analyzing the factors that influence citizens' decisions to use e-government services we hope to provide insights that help to increase adoption rates and improve the overall effectiveness of these services. In this paper, 562 valid responses were collected and analyzed to shed light on the issue. The results of the research showed that each of the proposed factors in the MFIAUEGS model played a significant role in influencing citizens' intentions to adopt and use e-government services.

Keywords: e-government, model acceptance, influencing factors, TAM

Procedia PDF Downloads 73
26203 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 360
26202 The Implementation of a Nurse-Driven Palliative Care Trigger Tool

Authors: Sawyer Spurry

Abstract:

Problem: Palliative care providers at an academic medical center in Maryland stated medical intensive care unit (MICU) patients are often referred late in their hospital stay. The MICU has performed well below the hospital quality performance metric of 80% of patients who expire with expected outcomes should have received a palliative care consult within 48 hours of admission. Purpose: The purpose of this quality improvement (QI) project is to increase palliative care utilization in the MICU through the implementation of a Nurse-Driven PalliativeTriggerTool to prompt the need for specialty palliative care consult. Methods: MICU nursing staff and providers received education concerning the implications of underused palliative care services and the literature data supporting the use of nurse-driven palliative care tools as a means of increasing utilization of palliative care. A MICU population specific criteria of palliative triggers (Palliative Care Trigger Tool) was formulated by the QI implementation team, palliative care team, and patient care services department. Nursing staff were asked to assess patients daily for the presence of palliative triggers using the Palliative Care Trigger Tool and present findings during bedside rounds. MICU providers were asked to consult palliative medicinegiven the presence of palliative triggers; following interdisciplinary rounds. Rates of palliative consult, given the presence of triggers, were collected via electronic medical record e-data pull, de-identified, and recorded in the data collection tool. Preliminary Results: Over 140 MICU registered nurses were educated on the palliative trigger initiative along with 8 nurse practitioners, 4 intensivists, 2 pulmonary critical care fellows, and 2 palliative medicine physicians. Over 200 patients were admitted to the MICU and screened for palliative triggers during the 15-week implementation period. Primary outcomes showed an increase in palliative care consult rates to those patients presenting with triggers, a decreased mean time from admission to palliative consult, and increased recognition of unmet palliative care needs by MICU nurses and providers. Conclusions: Anticipatory findings of this QI project would suggest a positive correlation between utilizing palliative care trigger criteria and decreased time to palliative care consult. The direct outcomes of effective palliative care results in decreased length of stay, healthcare costs, and moral distress, as well as improved symptom management and quality of life (QOL).

Keywords: palliative care, nursing, quality improvement, trigger tool

Procedia PDF Downloads 194
26201 Wait-Optimized Scheduler Algorithm for Efficient Process Scheduling in Computer Systems

Authors: Md Habibur Rahman, Jaeho Kim

Abstract:

Efficient process scheduling is a crucial factor in ensuring optimal system performance and resource utilization in computer systems. While various algorithms have been proposed over the years, there are still limitations to their effectiveness. This paper introduces a new Wait-Optimized Scheduler (WOS) algorithm that aims to minimize process waiting time by dividing them into two layers and considering both process time and waiting time. The WOS algorithm is non-preemptive and prioritizes processes with the shortest WOS. In the first layer, each process runs for a predetermined duration, and any unfinished process is subsequently moved to the second layer, resulting in a decrease in response time. Whenever the first layer is free or the number of processes in the second layer is twice that of the first layer, the algorithm sorts all the processes in the second layer based on their remaining time minus waiting time and sends one process to the first layer to run. This ensures that all processes eventually run, optimizing waiting time. To evaluate the performance of the WOS algorithm, we conducted experiments comparing its performance with traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Shortest-Job-First (SJF). The results showed that the WOS algorithm outperformed the traditional algorithms in reducing the waiting time of processes, particularly in scenarios with a large number of short tasks with long wait times. Our study highlights the effectiveness of the WOS algorithm in improving process scheduling efficiency in computer systems. By reducing process waiting time, the WOS algorithm can improve system performance and resource utilization. The findings of this study provide valuable insights for researchers and practitioners in developing and implementing efficient process scheduling algorithms.

Keywords: process scheduling, wait-optimized scheduler, response time, non-preemptive, waiting time, traditional scheduling algorithms, first-come-first-serve, shortest-job-first, system performance, resource utilization

Procedia PDF Downloads 91
26200 Preliminary Study of Medicinal Plants in Phu Langka National Park, Nakhon Phanom Province, Thailand

Authors: W. Chatan, W. Promprom

Abstract:

Phu Langka National Park is located in Nakhon Phanom Province, the Northeast of Thailand. It contains about 50 km2 of one mountain and three types of forest including deciduous dipterocarp, mixed deciduous and dry evergreen forests. It was interesting area because of that there were some local ethnic groups living around the national park and most people use plants in this area for their life. The objective of this research is to preliminary survey of the use of medicinal plants from this area by local ethnic groups living around the national park. Colour photographs of each species were prepared. In addition, ecology, distribution in the study area, utilization and vernacular names were provided. The result showed that sixteen species of medicinal plant species were found and most plants were used for digestive system and wound. The voucher specimens were deposited in the Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation (BKF), Thailand.

Keywords: diversity, ethnobotany, ethnophamacology, taxonomy, utilization

Procedia PDF Downloads 196
26199 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 291
26198 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93