Search results for: communal practice network
8778 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.Keywords: passive optical networks (PONs), fiber to the premises (FTTx), access network, OTDR
Procedia PDF Downloads 2888777 Algorithmic Fault Location in Complex Gas Networks
Authors: Soban Najam, S. M. Jahanzeb, Ahmed Sohail, Faraz Idris Khan
Abstract:
With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources.Keywords: FLA, fault location analysis, GDN, gas distribution network, GIS, geographic information system, NMS, network Management system, OMS, outage management system, SSGC, Sui Southern gas company, UFG, unaccounted for gas
Procedia PDF Downloads 6268776 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol
Procedia PDF Downloads 5388775 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 3828774 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 4478773 Role of a Physical Therapist in Rehabilitation
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Objectives: Physiotherapy in the intensive care unit (ICU) improves patient outcomes. We aimed to determine the characteristics of physiotherapy practice and critical barriers to applying physiotherapy in ICUs. Materials and Methods: A 54-item survey for determining the characteristics physiotherapists and physiotherapy applications in the ICU was developed. The survey was electronically sent to potential participants through the Turkish Physiotherapy Association network. Sixty-five physiotherapists (47F and 18M; 23–52 years; ICU experience: 6.0±6.2 years) completed the survey. The data were analyzed using quantitative and qualitative methods. Results: The duration of ICU practice was 3.51±2.10 h/day. Positioning (90.8%), active exercises (90.8%), breathing exercises (89.2%), passive exercises (87.7%), and percussion (87.7%) were the most commonly used applications. The barriers were related to physiotherapists (low level of employment and practice, lack of shift); patients (unwillingness, instability, participation restriction); teamwork (lack of awareness and communication); equipment (inadequacy, non-priority to purchase); and legal (reimbursement, lack of direct physiotherapy access, non-recognition of autonomy) procedures. Conclusion: The most common interventions were positioning, active, passive, breathing exercises, and percussion. Critical barriers toward physiotherapy are multifactorial and related to physiotherapists, patients, teams, equipment, and legal procedures. Physiotherapist employment, service maintenance, and multidisciplinary teamwork should be considered for physiotherapy effectiveness in ICUs.Keywords: intensive care units, physical therapy, physiotherapy, exercises
Procedia PDF Downloads 1028772 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 3178771 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City
Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi
Abstract:
Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis
Procedia PDF Downloads 338770 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 2328769 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 4188768 Optimization and Retrofitting for an Egyptian Refinery Water Network
Authors: Mohamed Mousa
Abstract:
Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction
Procedia PDF Downloads 2328767 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 4288766 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4718765 Practice of Applying MIDI Technology to Train Creative Teaching Skills
Authors: Yang Zhuo
Abstract:
This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice.Keywords: music education, educational technology, MIDI, teacher training
Procedia PDF Downloads 848764 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3418763 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5018762 Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use
Authors: Denis Constantin Topa, Irina Gabriela Cara, Gerard Jitareanu
Abstract:
Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use.Keywords: minimum tillage, conventional tillage, soil organic carbon, nutrients, soil aggregation, soil health
Procedia PDF Downloads 118761 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 6388760 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 5328759 Toward Concerned Leadership: A Novel Conceptual Model to Raise the Well-Being of Employees and the Leaderful Practice of Organizations
Authors: Robert McGrath, Zara Qureshi
Abstract:
A innovative leadership philosophy that is proposed herein is distinctly more humane than most leadership approaches Concerned Leadership. The central idea to this approach is to consider the whole person that comes to work; their professional skills and talents, as well as any personal, emotional challenges that could be affecting productivity and effectiveness at work. This paper explores Concerned Leadership as an integration of the two conceptual models areas examined in this paper –(1) leaderful organizations and practices, as well as (2) organizational culture, and defines leadership in the context of Mental Health and Wellness in the workplace. Leaderful organizations calls for organizations to implement leaderful practice. Leaderful practice is when leadership responsibility and decision-making is shared across all team members and levels, versus only delegated to top management as commonly seen. A healthy culture thrives off key aspects such as acceptance, employee pride, equal opportunity, and strong company leadership. Concerned Leadership is characterized by five main components: Self-Concern, Leaderful Practice, Human Touch, Belonging, and Compassion. As scholars and practitioners conceptualize leadership in practice, the present model seeks to uphold the dignity of each organizational member, thereby having the potential to transform workplaces and support all members.Keywords: leadership, mental health, reflective practice, organizational culture
Procedia PDF Downloads 818758 Modern Wars: States Responsibility
Authors: Lakshmi Chebolu
Abstract:
'War’, the word itself, is so vibrant and handcuffs the entire society. Since the beginning of manhood, the world has been evident in constant struggles. However, along with the growth of communities, relations, on the one hand, and disputes, on the other hand, infinitely increased. When states cannot or will not settle their disputes or differences by means of peaceful agreements, weapons are suddenly made to speak. It does not mean states can engage in war whenever they desire. At an international level, there has been a vast development of the law of war in the 20th century. War, it may be internal or international, in all situations, belligerent actors should follow the principles of warfare. With the advent of technology, the shape of war has changed, and it violates fundamental principles without observing basic norms. Conversely, states' attitudes towards international relationships are also undermined to some extent as state parties are not prioritized the communal interest rather than political or individual interest. In spite of the persistent development of communities, still many people are innocent victims of modern wars. It costs a toll on many lives, liberties, and properties and remains a major obstacle to nations' development. Recent incidents in Afghan are a live example to World Nations. We know that the principles of international law cannot be implemented very strictly on perpetrators due to the lacuna in the international legal system. However, the rules of war are universal in nature. The Geneva Convention, 1949 which are the core element of IHL, has been ratified by all 196 States. In fact, very few international treaties received this much of big support from nations. State’s approach towards Modern International Law, places a heavy burden on States practice towards in implementation of law. Although United Nations Security Council possesses certain powers under ‘Pacific Settlement of Disputes’, (Chapter VI) of the United Nations Charter to prevent disputes in a peaceful manner, conversely, this practice has been overlooked for many years due to political interests, favor, etc. Despite international consensus on the prohibition of war and protection of fundamental freedoms and human dignity, still, often, law has been misused by states’. The recent tendencies trigger questions about states’ willingness towards the implementation of the law. In view of the existing practices of nations, this paper aims to elevate the legal obligations of the international community to save the succeeding generations from the scourge of modern war practices.Keywords: modern wars, weapons, prohibition and suspension of war activities, states’ obligations
Procedia PDF Downloads 818757 Nurses’ Knowledge and Practice in the Management of Childhood Malnutrition in Selected Health Centers in Rwanda
Authors: Uwera Monique, Bagweneza Vedaste, Rugema Joselyne, Lakshmi Rajeswaran
Abstract:
Background: Malnutrition contributes significantly to childhood morbidity and mortality. Nurses usually exhibit inadequate knowledge of childhood malnutrition management. Nurses require appropriate knowledge and skills to manage malnutrition using appropriate protocols. Objectives: The general objective of this study was to assess Nurses’ knowledge and practice in the management of childhood malnutrition in selected health centers in Rwanda. The specific objectives were to assess the level of nurses’ knowledge in the management of childhood malnutrition, to determine the level of practice in the management of childhood malnutrition in selected health centers in Rwanda, and to establish the relationship between the demographic profile and nurses’ knowledge in the management of childhood malnutrition in selected health centers in Rwanda. Methods: The study used a descriptive cross-sectional study design and quantitative approach among 196 nurses from 24 health centers in one district. A questionnaire was used to collect data on knowledge and practice towards childhood malnutrition management. The entire population was used, and SPSS version 25 helped to analyze data. Descriptive statistics helped to produce the frequencies and percentages, while chi-square helped to determine the relationship between demographic variables and knowledge and practice scores. Results: The study findings showed that of 196 participants, 48% had a high level of knowledge about malnutrition management with more than 75% score, and 17% and 35% had low and moderate levels of knowledge, respectively. 61% of them had a high level of practice in malnutrition management, as the acceptable score was 75%. 13% had a low level, while 26% had a moderate level of practice. Most socio-demographic characteristics have shown a statistical relationship with the level of knowledge. Conclusion: The study findings revealed that almost half of the nurses had good knowledge of childhood malnutrition management, and this was associated with many socio-demographic data, while more than half had good practice in that aspect. However, some nurses who still have gaps in knowledge and practice require necessary measures to boost these components.Keywords: nurse, knowledge, practice, childhood malnutrition
Procedia PDF Downloads 668756 Professional Reciprocal Altruism in Education: Aligning Core Values and the Community of Practice for Today’s Educational Practitioners
Authors: Jessica Bogunovich, Kimberly Greene
Abstract:
As a grounded theory, Professional Reciprocal Altruism in Education (PRAE) offers an empowering means of understanding how the predominant motivator of those entering the teaching profession, altruism, serves as a shared value to inspire the individual’s personal practice beyond a siloed experience and into one of authentic engagement within the Community of Practice (CoP) of professional educators. The process of aligning one’s personal values, attitudes, and preconceived cultural constructs with those of the CoP, affords the alignment of the authentic and professional self; thus, continuously fostering one’s intrinsic motivation to remain engaged in their individual continuous process of growth and development for their students, community, profession, and themselves.Keywords: altruism, Community of Practice. cultural constructs, teacher attrition, reciprocal altruism, value congruence
Procedia PDF Downloads 2098755 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 1478754 Social Work in Rehabilitation: Improving Practice Through Action Research
Authors: Poglajen Andrej, Malečihar Špela
Abstract:
Social work in rehabilitation needs constant development and embetterment of its practitioners. This became even more evident during the covid pandemic at times when outside sources of help, care and support were non-existent, or the access to such sources was severely limited. Social workers are, at our core, researchers of the rehabilitated world – from a personal and intrapersonal to a systematic perspective. This is also why a method of research was used in order to see if clinical social work practice can be further improved. The first stage of research showcased how action research and social work practice share many of the core values, whereas the Implementation of the new behaviour principle was severely lacking and thus became the main focus of the follow-up research. Twenty randomly selected case files of clinical social work practice in rehabilitation were qualitatively analyzed and potential benefits of action research on practice were assessed in the process of intervention while also getting feedback of the usefulness by the patients themselves using pre and post evaluation forms where a mixed-method approach was used. Implementation of new behaviour principle was recognized as a potential, improving factor of clinical social work practice in most analyzed cases, while it wasn’t deemed necessary in all of them. Potential improvements of newly implemented behaviour span across different areas of life and were also noted in the feedback from the rehabilitates. Despite the benefits of practice embetterment, the inclusion and focus on Implementation of new behaviour principle also caused additional workload, lack of time and stressful situations for the practitioners, which showcased the need to address certain systemic obstacles in the context of social work in healthcare in Slovenia.Keywords: action research, practice, rehabilitation, social work
Procedia PDF Downloads 1608753 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 1778752 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition
Authors: Li Zhang, Yuehong Su
Abstract:
Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.Keywords: neural network, bended lightpipe, transmittance, Photopia
Procedia PDF Downloads 1528751 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network
Authors: Magdi. M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control
Procedia PDF Downloads 7028750 Evidence Based Practice for Oral Care in Children
Authors: T. Turan, Ç. Erdoğan
Abstract:
As far as is known, general nursing care practices do not include specific evidence-based practices related to oral care in children. This study aimed to evaluate the evidence based nursing practice for oral care in children. This article is planned as a review article by searching the literature in this field. According to all age groups and the oral care in various specific situations located evidence in the literature were examined. It has been determined that the methods and frequency used in oral care practices performed by nurses in clinics differ from one hospital to another. In addition, it is seen that different solutions are used in basic oral care, oral care practices to prevent ventilator-associated pneumonia and evidence-based practice in mucositis management in children. As a result, a standard should be established in oral care practices for children and education for children is recommended.Keywords: evidence-based practice, oral care, nursing, children
Procedia PDF Downloads 2948749 Construction Project Planning Using Fuzzy Critical Path Approach
Authors: Omar M. Aldenali
Abstract:
Planning is one of the most important phases of the management science and network planning, which represents the project activities relationship. Critical path is one of the project management techniques used to plan and control the execution of a project activities. The objective of this paper is to implement a fuzzy logic approach to arrange network planning on construction projects. This method is used to finding out critical path in the fuzzy construction project network. The trapezoidal fuzzy numbers are used to represent the activity construction project times. A numerical example that represents a house construction project is introduced. The critical path method is implemented on the fuzzy construction network activities, and the results showed that this method significantly affects the completion time of the construction projects.Keywords: construction project, critical path, fuzzy network project, planning
Procedia PDF Downloads 143