Search results for: artificial recharge site
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4577

Search results for: artificial recharge site

4367 An Experimental Study of Iron Smelting Techniques Used in the South East Rajasthan, with Special Reference to Nathara-Ki-Pal, Udaipur

Authors: Udaya Kumar

Abstract:

The aim of this paper is to discuss recent research conducted in experimental studies related to the process of the iron smelting. The paper will discuss issues related to the selection of iron ore, structure of furnace, making of tuyeres, fashioning of blowers and firing temperatures through experiments conducted recently and scientific analyses of experimental work. Experiments were conducted in order to investigate iron smelting techniques used at the Early Historic site of Nathara-Ki-Pal. (73°47’E; 24°16N is located about 70 km south-east of Udaipur city). Geographically, Nathara-Ki-Pal has located the foot hills of Aravalli’s. Iron ore and iron slag can be seen on the surface of the site. The remains of 4 broken furnaces were recovered during excavations (2007 and 2008) and the site was excavated by Prof. Pandey from the Department of Archaeology of the Institute of Rajasthan studies, Rajasthan Vidyapeeth University. This shows that the site of Nathara-Ki-Pal was a center of iron smelting. Results of experiments performed both in the field reconstruction of a bloomery furnace and in the laboratory are discussed.

Keywords: experimental studies, furnace, smelting techniques, making of tuyeres

Procedia PDF Downloads 188
4366 Attitude of University Students in the Use of Artificial Intelligence

Authors: Ricardo Merlo, María González, Zully Rivero, Laura González

Abstract:

This exploratory work was to know the perception of the use of artificial intelligence (AI) that university students have during their passage through the classroom. The significance of using AI in education, the degree of interest, knowledge acquisition, and how it would influence an interactive resource for acquiring skills were explored. Within this framework, a test with 30 items was designed and administered to 800 volunteer first-year university students of natural and exact sciences. Based on a randomized pilot test, it was validated with Cronbach's Alpha coefficient. Subsequently, the descriptive statistics of the sample used allowed us to observe the preponderance of the dimensions that constitute the attitude construct. Then, the factorial analysis by dimensions contributed to discern about the students' habits according to the knowledge acquired and the emotions put into play in the topics developed in the classroom.

Keywords: attitude, artificial intelligence, didactics, teaching

Procedia PDF Downloads 35
4365 Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies

Authors: Saima Iftikhar Rida Shabbir, Zeeshan Hassan

Abstract:

Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives.

Keywords: site suitability, check dams, SHP, terrain analysis, volume estimation

Procedia PDF Downloads 313
4364 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 40
4363 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 145
4362 Recent Developments in Artificial Intelligence and Information Communications Technology

Authors: Dolapo Adeyemo

Abstract:

Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.

Keywords: ICT, IOT, accessibility solutions, universal design

Procedia PDF Downloads 87
4361 The Possible Application of Artificial Intelligence in Hungarian Court Practice

Authors: László Schmidt

Abstract:

In the context of artificial intelligence, we need to pay primary and particular attention to ethical principles not only in the design process but also during the application process. According to the European Commission's Ethical Guidelines, AI must have three main characteristics: it must be legal, ethical and stabil. We must never lose sight of the ethical principles because we risk that this new technology will not help democratic decision-making under the rule of law, but will, on the contrary, destroy it. The rapid spread and use of artificial intelligence poses an enormous challenge to both lawmaking and law enforcement. On legislation because AI permeates many areas of our daily lives that the legislator must regulate. We can see how challenging it is to regulate e.g., selfdriving cars/taxis/vans etc. Not to mention, more recently, cryptocurrencies and Chat GPT, the use of which also requires legislative intervention, from copyright to scientific use and even law of succession. Artificial intelligence also poses an extraordinary challenge to law enforcement. In criminal cases, police and prosecutors can make great use of AI in investigations, e.g. in forensics, DNA samples, reconstruction, identification, etc. But it can also be of great help in the detection of crimes committed in cyberspace. In criminal or civil court proceedings, AI can also play a major role in the evaluation of evidence and proof. For example, a photo or video or audio recording could be immediately revealed as genuine or fake. Likewise, the authenticity or falsification of a document could be determined much more quickly and cheaply than with current procedure (expert witnesses). Neither the current Hungarian Civil Procedure Act nor the Criminal Procedure Act allows the use of artificial intelligence in the evidentiary process. However, this should be changed. To use this technology in court proceedings would be very useful. The procedures would be faster, simpler, and therefore cheaper. Artificial intelligence could also replace much of the work of expert witnesses. Its introduction into judicial procedures would certainly be justified, but with due respect for human rights, the right to a fair trial and other democratic and rule of law guarantees.

Keywords: artificial intelligence, judiciary, Hungarian, court practice

Procedia PDF Downloads 78
4360 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 550
4359 Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 488
4358 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry

Authors: Ahmed Emad Ahmed

Abstract:

This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.

Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS

Procedia PDF Downloads 170
4357 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
4356 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 355
4355 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
4354 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 259
4353 The Usage of Artificial Intelligence in Instagram

Authors: Alanod Alqasim, Yasmine Iskandarani, Sita Algethami, Jawaher alzughaiby

Abstract:

This study focuses on the usage of AI (Artificial Intelligence) systems and features on the Instagram application and how it influences user experience and satisfaction. The aim is to evaluate the techniques and current capabilities, restrictions, and potential future directions of AI in an Instagram application. Following a concise explanation of the core concepts underlying AI usage on Instagram. To answer this question, 19 randomly selected users were asked to complete a 9-question survey on their experience and satisfaction with the app's features (Filters, user preferences, translation tool) and authenticity. The results revealed that there were three prevalent allegations. These declarations include that Instagram has an extremely attractive user interface; secondly, Instagram creates a strong sense of community; and lastly, Instagram has an important influence on mental health.

Keywords: AI (Artificial Intelligence), instagram, features, satisfaction, experience

Procedia PDF Downloads 82
4352 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 97
4351 Artificial Intelligence and Cybernetics in Bertrand Russell’s Philosophy

Authors: Djoudi Ali

Abstract:

In this article, we shall expose some of the more interesting interactions of philosophy and cybernetics, some philosophical issues arising in cybernetic systems, and some questions in philosophy of our daily life related to the artificial intelligence. Many of these are fruitfully explored in the article..This article will shed light also on the importance of science and technology in our life and what are the main problems of misusing the latest technologies known under artificial intelligence and cybernatics acoording to Bertrand Russell’s point of view; then to analyse his project of reforms inculding science progress risks , the article show also the whole aspect of the impact of technology on peace , nature and on individual daily behavior, we shall discuss all issues and defies imposing by this new era , The article will invest in showing what Russell will suggest to eliminate or to slow down the dangers of these changes and what are the main solutions to protect the indiviual’s rights and responsiblities In this article, We followed a different methodology, like analysis method and sometimes the historical or descriptive method, without forgetting criticizing some conclusions when it is logically needed In the end, we mentioned what is supposed to be solutions suggested by Bertrand Russell that should be taken into considerations during the next decades and how to protect our ennvironement and the human being of any risk of disappearing

Keywords: artificial intelligence, technology, cybernetics, sience

Procedia PDF Downloads 125
4350 A Site Unexplored: Recently Discovered In Bangladesh

Authors: Md. Rifat-Ur- Rahman

Abstract:

Dhamairnagar, Sirajganj, Bangladesh, local villagers describe the peculiar mounds spotted scattered among the nearby villages as “Buruj”. Among these, a mound was explored in one of these mounds, in Khirtala village, in early 2019. Primary archaeological surveys and map making has been conducted in this site, where suspect lays the remains of an 8 square miles city, at least 1200 years old. In the government gazettes of Bangladesh from 1990, this place has been linked with a mythical kind from the Indian epic, Mahabharata. In the primary explorations, found bricks, mortars, different kinds of potteries and terracotta pieces. Assumable observation is that this city was a flourishing establishment during the early Pala dynasty of Bengal (800 AD to 1200 AD). At present there are four indigenous groups live around this site and they are known as Mahato, Teli, Oraon and Santals. These four indigenous groups are considered as the core four of Bengali ethnicity. In the folklore of these groups we find stories of ancient kingdoms which have not been documented through archaeological findings yet. So, a question rises about the population that was used to reside in this archaeological site. Were they the ancestors of these indigenous tribes that are dwelling in this area? With such primary information, the aim is to conduct a comparative study of the physiology; osteology and cultural practices of this civilization.

Keywords: Archaeology, Heritage, Indigenous Peoples, Physiology

Procedia PDF Downloads 136
4349 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 171
4348 The Use of Artificial Intelligence to Harmonization in the Lawmaking Process

Authors: Supriyadi, Andi Intan Purnamasari, Aminuddin Kasim, Sulbadana, Mohammad Reza

Abstract:

The development of the Industrial Revolution Era 4.0 brought a significant influence in the administration of countries in all parts of the world, including Indonesia, not only in the administration and economic sectors but the ways and methods of forming laws should also be adjusted. Until now, the process of making laws carried out by the Parliament with the Government still uses the classical method. The law-making process still uses manual methods, such as typing harmonization of regulations, so that it is not uncommon for errors to occur, such as writing errors, copying articles and so on, things that require a high level of accuracy and relying on inventory and harmonization carried out manually by humans. However, this method often creates several problems due to errors and inaccuracies on the part of officers who harmonize laws after discussion and approval; this has a very serious impact on the system of law formation in Indonesia. The use of artificial intelligence in the process of forming laws seems to be justified and becomes the answer in order to minimize the disharmony of various laws and regulations. This research is normative research using the Legislative Approach and the Conceptual Approach. This research focuses on the question of how to use Artificial Intelligence for Harmonization in the Lawmaking Process.

Keywords: artificial intelligence, harmonization, laws, intelligence

Procedia PDF Downloads 161
4347 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 114
4346 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo

Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi

Abstract:

This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.

Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal

Procedia PDF Downloads 142
4345 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 103
4344 A Review: Artificial Intelligence (AI) Driven User Access Management and Identity Governance

Authors: Rupan Preet Kaur

Abstract:

This article reviewed the potential of artificial intelligence in the field of identity and access management (IAM) and identity governance and administration (IGA), the most critical pillars of any organization. The power of leveraging AI in the most complex and huge user base environment was outlined by simplifying and streamlining the user access approvals and re-certifications without any impact on the user productivity and at the same time strengthening the overall compliance of IAM landscape. Certain challenges encountered in the current state were detailed where majority of organizations are still lacking maturity in the data integrity aspect. Finally, this paper concluded that within the realm of possibility, users and application owners can reap the benefits of unified approach provided by AI to improve the user experience, improve overall efficiency, and strengthen the risk posture.

Keywords: artificial intelligence, machine learning, user access review, access approval

Procedia PDF Downloads 93
4343 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 422
4342 The Impact of Artificial Intelligence on Digital Crime

Authors: Á. L. Bendes

Abstract:

By the end of the second decade of the 21st century, artificial intelligence (AI) has become an unavoidable part of everyday life and has necessarily aroused the interest of researchers in almost every field of science. This is no different in the case of jurisprudence, whose main task is not only to create its own theoretical paradigm related to AI. Perhaps the biggest impact on digital crime is artificial intelligence. In addition, the need to create legal frameworks suitable for the future application of the law has a similar importance. The prognosis according to which AI can reshape the practical application of law and, ultimately, the entire legal life is also of considerable importance. In the past, criminal law was basically created to sanction the criminal acts of a person, so the application of its concepts with original content to AI-related violations is not expected to be sufficient in the future. Taking this into account, it is necessary to rethink the basic elements of criminal law, such as the act and factuality, but also, in connection with criminality barriers and criminal sanctions, several new aspects have appeared that challenge both the criminal law researcher and the legislator. It is recommended to continuously monitor technological changes in the field of criminal law as well since it will be timely to re-create both the legal and scientific frameworks to correctly assess the events related to them, which may require a criminal law response. Artificial intelligence has completely reformed the world of digital crime. New crimes have appeared, which the legal systems of many countries do not or do not adequately regulate. It is considered important to investigate and sanction these digital crimes. The primary goal is prevention, for which we need a comprehensive picture of the intertwining of artificial intelligence and digital crimes. The goal is to explore these problems, present them, and create comprehensive proposals that support legal certainty.

Keywords: artificial intelligence, chat forums, defamation, international criminal cooperation, social networking, virtual sites

Procedia PDF Downloads 89
4341 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 408
4340 The Impact of Artificial Intelligence on Digital Construction

Authors: Omil Nady Mahrous Maximous

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 57
4339 Geographical Information System-Based Approach for Vertical Takeoff and Landing Takeoff and Landing Site Selection

Authors: Chamnan Kumsap, Somsarit Sinnung, Suriyawate Boonthalarath, Teeranai Srithamarong

Abstract:

This research paper addresses the GIS analysis approach to the investigation of suitable sites for a vertical takeoff and landing drone. The study manipulated GIS and terrain layers into a proper input before the spatial analysis that included slope, reclassify, classify, and buffer was applied to the individual layers. The output layers were weighted, and multi-criteria analyzed before those patches failing to comply with filtering out criteria were discarded. Field survey for each suitable candidate site was conducted to cross-check the proposed approach with the real world. Conclusion was extracted for the VTOL takeoff and landing sites, and discussion was provided with further study being suggested on the mission simulation of selected takeoff and landing sites.

Keywords: GIS approach, site selection, VTOL, takeoff and landing

Procedia PDF Downloads 104
4338 Usefulness of Web Sites in Starting Up Wineries: A Comparative study of Canadian, Moroccan and American Small Firms

Authors: Jocelyn D. Perreault

Abstract:

An exploratory study has been launched in 2013-2014 in the province of Quebec, the state of Vermont (USA) and the region of Zaer in Morocco. We have realized three first case studies in order to better understand the marketing strategies of starting up vineries, which are defined as having a maximum of five years of operations. The methodology used consisted of visiting the vineyards; conducting semi-directed interviews with owner-managers; visiting points-of-sale of the wines and analysing the web sites using an assessment grid. The results indicate many differences between the three firms in their use of their web sites. More precisely, we have noticed that: -The Quebec vineyard uses its web site in collaboration with the touristic actors of its region and the association of the wine makers of the province of Quebec.Positioning is as a touristic attraction. -In comparison,the Moroccan firm limits the content of the web site to itself and its activities and somehow to the wine industry.Positioning is as a wine specialist. -The american firm associated its web site more to farm markets actors and activities of the region.Positioning is as an agricultural actor. -The positionings of the three vineyards are very different from each others and will be discussed more thoroughly during the presentation to better understand the use of web sites, thus contributing to the «brand image». -Improvements to the three web sites have been identified and suggested by more than a hundred of persons using the same grid and comprising students of bachelor and MBA degrees from our university. In general, the web sites have been considered satisfying but requiring several improvements at different levels. Changes or updates have been observed for the Quebec winery web site but practically no changes have been made to the others in the last months. The assessment grid will be presented in more details as well as the global and the partial scores given by the respondents. In conclusion, we have noticed that only one winery is considered as a «heavy and strategic user» of its web site and of Facebook and Twitter.

Keywords: web site, wineries, marketing, positioning, starting up strategies

Procedia PDF Downloads 303