Search results for: organic acid response surface methodology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19900

Search results for: organic acid response surface methodology

17560 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 229
17559 Assessment of Lactic Acid Bacteria of Probiotic Potentials in Dairy Produce in Saudi Arabia

Authors: Rashad R. Al-Hindi

Abstract:

The aim of this study was to isolate and identify lactic acid bacteria and evaluate their therapeutic and food preservation importance. Ninety-three suspected lactic acid bacteria (LAB) were isolated from thirteen different raw and fermented milk of indigenous sources in the Kingdom of Saudi Arabia. The identification of forty-six selected LAB strains and genetic relatedness were performed based on 16S rDNA gene sequence comparison. The LAB counts in certain samples were higher under microaerobic than anaerobic conditions. The identified LAB belonged to genera Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains). Phylogenetic tree generated from the full-length (~1.6 kb) sequences confirmed previous findings. Utilization of shorter 16S rDNA sequences (~1.0 kb) also discriminated among strains of which V2 region was the most effective. None of the strains exhibited resistance to clinically relevant antibiotics or undesirable hemolytic activity, while they differed in other probiotic characteristics, e.g., tolerance to acidic pH, resistance to bile salt, and antibacterial activity. In conclusion, the isolates Lactobacillus casei MSJ1, Lactobacillus casei Dwan5, Lactobacillus plantarum EyLan2 and Enterococcus faecium Gail-BawZir8 are likely the best probiotic LAB and we speculate that studying the synergistic effects of bacterial combinations might result in the occurrence of more effective probiotic potential. We argue that the raw and fermented milk of animals hosted in Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, are rich in LAB with promising probiotics potential.

Keywords: fermented foods, lactic acid bacteria, probiotics, Saudi Arabia

Procedia PDF Downloads 192
17558 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State

Authors: Nwanneka Mmonwuba

Abstract:

Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.

Keywords: solid waste, groundwater, disposal, dumpsite

Procedia PDF Downloads 44
17557 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 125
17556 Colonization of Candida Albicans on 3D Printed CAD/CAM Complete Denture Versus Conventional Complete Denture: Randomized Controlled Clinical Study

Authors: Eman Helal, Ahmed M. Esmat

Abstract:

Statement of problem: The development of computer-aided design/computer-aided manufacturing (CAD/CAM) resin dentures has simplified complete denture production. Most of the studies evaluated the mechanical properties of the material, but the hygienic performance of the CAD /CAM denture and their ability to maintain clean surfaces and minimize bacterial accumulation is still lacking. Purpose evaluation of the antibacterial characteristics of the 3D printed CAD/CAM denture and to compare it with the conventional heat polymerized acrylic denture base material. Methodology a total of thirty completely edentulous patients grouped randomly into two groups (Group I: Control group) received conventional heat polymerized acrylic resin complete dentures, (Group II: Test group) received 3D printed (CAD/CAM) dentures (stereolithographic PMMA), Samples of Candida albicans culture swabs were taken after 1 month and 3 months of dentures` insertion. A culture swab was obtained by scrubbing the fitting surface of the upper denture. At each time interval, three swab samples were collected from each patient and were inoculated in three individual culture media. Results: there was a significant difference in the colonization of Candida albicans to the fitting surface of the dentures between both groups (Group I: Conventional denture cases) exhibited more adhesion of Candida Albicans to the fitting surface than did (Group II: CAD/CAM cases) (P<0.05). Conclusion: 3D printed CAD/CAM complete denture showed minimal Candida adherence upon upper denture fitting compared to conventional heat-polymerized acrylic resin, which contributes to decreasing the incidence of denture stomatitis which is considered one of the most common problems among complete denture wearers.

Keywords: CAD/CAM denture, completely edentulous, elderly patients, 3D printing, antimicrobial efficiency, conventional denture, PMMA, Candida Albicans, denture stomatitis

Procedia PDF Downloads 137
17555 Influence of Digestate Fertilization on Soil Microbial Activity, Greenhouse Gas Emissions and Yield

Authors: M. Doyeni, S. Suproniene, V. Tilvikiene

Abstract:

Agricultural wastes contribute significantly to global climate change through greenhouse gas emissions if not adequately recycled and sustainably managed. A recurring agricultural waste is livestock wastes that have consistently served as feedstock for biogas systems. The objective of this study was to access the influence of digestate fertilization on soil microbial activity and greenhouse gas emissions in agricultural fields. Wheat (Triticum spp. L.) was fertilized with different types of animal wastes digestates (organic fertilizers) and mineral nitrogen (inorganic fertilizer) for three years. The 170 kg N ha⁻¹ presented in digestates were split fertilized at an application rate of 90 and 80 kg N ha⁻¹. The soil microorganism activity could be predicted significantly using the dehydrogenase activity and soil microbial biomass carbon. By combining the two different monitoring approaches, the different methods applied in this study were sensitive to enzymatic activities and organic carbon in the living component of the soil organic matter. The emissions of greenhouse gasses (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) were monitored directly by a static chamber system. The soil and environmental variables were measured to determine their influence on greenhouse gas emissions. Emission peaks was observed in N₂O and CO₂ after the first application of fertilizers with the emissions flattening out over the cultivating season while CH₄ emission was negligible with no apparent patterns observed. Microbial biomass carbon and dehydrogenase activity were affected by the fertilized organic digestates. A significant difference was recorded between the control and the digestate treated soils for the microbial biomass carbon and dehydrogenase. Results also showed individual and cumulative emissions of CO₂, CH₄ and N₂O from the digestates were relatively low suggesting the digestate fertilization can be an efficient method for improving soil quality and reducing greenhouse gases from agricultural sources in temperate climate conditions.

Keywords: greenhouse gas emission, manure digestate, soil microbial activity, yield

Procedia PDF Downloads 134
17554 Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing

Authors: Kusuma Urs M. B., Navakant Bhat, Vinayak B. Kamble

Abstract:

Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors.

Keywords: gas sensing, heterostructure, metal oxide semiconductor, space charge region

Procedia PDF Downloads 124
17553 Performances of Ashwagandha (Withania somnifera Duanal) as Affected by Method of Planting and Source of Nutrients

Authors: Ewon Kaliyadasa, U. L. B. Jayasinghe, S. E. Peiris

Abstract:

Ashwagandha (Withania sominifera Duanal) is an important medicinal herb belongs to family Solanaceae. This plant has raised its popularity after discovering anti stress and sex stimulating properties that mainly due to the presence of biologically active alkaloid compounds. Therefore it is vital to adapt to a proper agro technological package that ensure optimum growth of ashwagandha to obtain the finest quality without degrading pharmacologically active constituents. Organic and inorganic fertilizer mixtures were combined with direct seeding and transplanting as four different treatments in this study. Tuber fresh and dry weights were recorded up to twelve months starting from two months after sowing (MAS) while shoot height, root length, number of leaves, shoot fresh and dry weights and root: shoot ratio up to 6MAS. Results revealed that growth of ashwagandha was not affected significantly by method of planting or type of fertilizer or its combinations during most of the harvests. However, tubers harvested at 6MAS recorded the highest dry tuber weight per plant in all four treatments compared to early harvests where two direct seeded treatments are the best. Chemical comparison of these two treatments, direct seeding coupled with organic and inorganic fertilizer shown that direct seeding with organic treatment recorded the highest values for alkaloid and withaferine A content with lower percentage of fiber. Further these values are in concurring with the values of commercially available tuber samples. Having considered all facts, 6MAS can be recommended as the best harvesting stage to obtain high quality tubers of ashwagandha under local conditions.

Keywords: alkaloids, direct seeding, dry tuber weight, inorganic fertilizer, organic fertilizer, transplanting, withaferine a

Procedia PDF Downloads 340
17552 Resilience Perspective on Response Strategies for Super-Standard Rain and Flood Disasters: A Case Study of the “Zhengzhou 7.20 Heavy Rain” Event

Authors: Luojie Tang

Abstract:

The article takes the "7.20 Heavy Rainstorm in Zhengzhou" as a starting point, collects relevant disaster data, reproduces the entire process of the disaster, and identifies the main problems exposed by the city in responding to super-standard rain and flood disasters. Based on the review of resilience theory, the article proposes a shift in thinking about the response to super-standard rain and flood disasters from the perspective of resilience, clarifies the differences in the emphasis on resilience at different stages of disasters, and preliminarily constructs a response system for super-standard rain and flood disasters based on the guidance of resilience theory. Finally, combined with the highlighted problems in the 7.20 Heavy Rainstorm in Zhengzhou, the article proposes targeted response strategies from three perspectives: institutional management, technological support, and infrastructure, under the perspective of resilience.

Keywords: resilient city, exceedance-based stormwater management, disaster risk reduction, megalopolis

Procedia PDF Downloads 109
17551 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion

Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng

Abstract:

Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.

Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index

Procedia PDF Downloads 82
17550 Dynamic Response Analysis of Structure with Random Parameters

Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire

Abstract:

In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.

Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters

Procedia PDF Downloads 186
17549 Distribution of Current Emerging Contaminants in South Africa Surface and Groundwater

Authors: Jou-An Chen, Julio Castillo, Errol Duncan Cason, Gabre Kemp, Leana Esterhuizen, Angel Valverde Portal, Esta Van Heerden

Abstract:

Emerging contaminants (EC) such as pharmaceutical and personal care products have been accumulating for years in water bodies all over the world. However, very little is known about the occurrences, levels, and effects of ECs in South African water resources. This study provides an initial assessment of the distribution of eight ECs (Acetaminophen, Atrazine, Terbuthlyazine, Carbamazepine, Phenyton, Sulfmethoxazole, Nevirapine and Fluconozole) in fifteen water sources from the Free State and Easter Cape provinces of South Africa. Overall, the physiochemical conditions were different in surface and groundwater samples, with concentrations of several elements such as B, Ca, Mg, Na, NO3, and TDS been statistically higher in groundwater. In contrast, ECs levels, quantified at ng/mL using the LC/MS/ESI, were much lower in groundwater samples. The ECs with higher contamination levels were Carbamazepine, Sulfmethoxazole, Nevirapine, and Terbuthlyazine, while the most widespread were Sulfmethoxazole and Fluconozole, detected in all surface and groundwater samples. Fecal and E. coli tests indicated that surface water was more contaminated than groundwater. Microbial communities, assessed using NGS, were dominated by the phyla Proteobacteria and Bacteroidetes, in both surface and groundwater. Actinobacteria, Planctomycetes, and Cyanobacteria, were more dominant in surface water, while Verrucomicrobia were overrepresented in groundwater. In conclusion, ECs contamination is closely associated with human activities (human wastes). The microbial diversity identified can suggest possible biodegradation processes.

Keywords: emerging contaminants, EC, personal care products, pharmaceuticals, natural attenuation process

Procedia PDF Downloads 212
17548 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 338
17547 Thermal Annealing Effects on Minority Carrier Lifetime in GaInAsSb/GaSb by Means of Photothermal Defletion Technique

Authors: Souha Bouagila, Soufiene Ilahi

Abstract:

Photothermal deflection technique PTD have been employed to study the impact of thermal annealing on minority carrier in GaInAsSb grown on GaSb substarte, which used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). Photothermal defelction technique is nondescructive and accurate technique for electronics parameters determination. The measure of non-radiative recombination, electronic diffusivity, surface and interface recombination are effectuated by fitting the theoretical PTD signal to the experimental ones. As a results, we have found that Non-radiative lifetime increases from 3.8 µs (± 3, 9 %) for not annealed GaInAsSb to the 7.1 µs (± 5, 7%). In fact, electronic diffusivity D increased from 60.1 (± 3.9 %) to 89.6 cm2 / s (± 2.7%) for the as grown to that annealed for 60 min respectively. We have remarked that surface recombination velocity (SRV) decreases from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6).

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, Surface and interface recombination velocity.GaInAsSb active layer

Procedia PDF Downloads 67
17546 The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression

Authors: Sina Mahdavi, Mahdi Asghari Ozma

Abstract:

Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals.

Keywords: multiple sclerosis, varicella-zoster virus, central nervous system, autoimmunity

Procedia PDF Downloads 72
17545 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out by using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature have been defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the leading parameters such as the pressure distribution, minimal film thickness, viscosity, and density changes. The obtained results show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. The rough surface with kurtosis value over 3 influences the fluctuated shape of pressure distribution higher than other cases.

Keywords: CFD, EHL, kurtosis, surface roughness

Procedia PDF Downloads 316
17544 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 370
17543 Preparation of Nano-Sized Samarium-Doped Yttrium Aluminum Garnet

Authors: M. Tabatabaee, N. Binavayan, M. R. Nateghi

Abstract:

In this research nano-size of yttrium aluminum garnet (YAG) containing lanthanide metals was synthesized by the sol-gel method in presente citric acid as a complexing agent. Samarium (III) was used to synthesis of YAG:M3+. The prepared powders were characterized by powder X-ray diffraction (PXRD). The size distribution and morphology of the samples were analyzed by scanning electron microscopy (SEM). XRD results show that Sm, La, and ce doped YAG crystallizes in the cubic system and additional peaks compared to pure YAG can be assigned to the presence of Sm in the synthesize YAG. The SEM images show possess spherical nano-sized particle with average 50 nm in diameter.

Keywords: citric acid, nano particle, samarium, yttrium aluminum garnet

Procedia PDF Downloads 302
17542 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production

Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez

Abstract:

Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.

Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids

Procedia PDF Downloads 120
17541 Thanking as a Compliment Response at Higher Education Institution: A Comparative Study of Omani and Australian Speakers

Authors: Arfat Bait Jamil

Abstract:

This study investigates how the compliment response of thanking is performed by Omani and Australian, lecturers and students, in higher educational settings. Semi-structured interviews and observation records were used to collect data. Thanking responses were aggregated from interviews with Omani lecturers and students in Oman, and from Australian lecturers and students in Australia, wherein they were asked to imagine themselves being complimented on five different compliment topics. After the interviews, they used observation record to note down real-life examples of compliment exchanges, along with their opinions. The findings show that thanking is not a simple compliment response. Depending on the context in which the compliment is delivered, thanking does not always suggest positive thoughts or feelings and compliment approval.

Keywords: Australia, compliment responses, Oman, thanking

Procedia PDF Downloads 252
17540 Peat Soil Stabilization Methods: A Review

Authors: Mohammad Saberian, Mohammad Ali Rahgozar, Reza Porhoseini

Abstract:

Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit.

Keywords: peat soil, stabilization, depth, strength, unconfined compressive strength (USC)

Procedia PDF Downloads 569
17539 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 192
17538 The Bacteriocin Produced by Lactic Acid Bacteria as an Antibacterial of Sub Clinic Mastitis on Dairy Cows

Authors: Nenny Harijani, Dhandy Koesoemo Wardhana

Abstract:

The aim of this study is to know the bacteriocin as antimicrobial activity produced by Lactic Acid Bacteria (LAB) as Antibacterial of Sub Clinic Mastitis on Dairy Cows. The antimicrobial is produced by LAB which isolates from cattle intestine can inhibit the growth Staphylococcus aureus, Steptocococcus agalactiae an Escherichia coli which were caused by dairy cattle subclinical mastitis. The failure of this bacteria growth was indicated by the formation of a clear zone surrounding the colonies on Brain Heart Infusion Agar plate. The bacteriocin was produced by Lactic Acid Bacteria (LAB) as antimicrobial, which could inhibit the growth of indicator bacteria Staphylococcus aureus, S.aglactiae and E.coli. This study was also developed bacteriocin to be used as a therapeutic of subclinical mastitis on dairy cows. The method used in this study was isolation, selection and identification of LAB using Mann Rogosa Sharp Medium, followed by characterization of the bacteriocin produced by LAB. The result of the study showed that bacteriocin isolated from beef cattle’s intestine could inhibit the growth Staphylococcus aureus, S. agalactiae, an Escherichia coli, which was indicated by clear zone surrounding the colonies on Brain Heart Infusion Agar plate. Characteristics of bacteriocin were heat-stable exposed to 80 0C for 30 minutes and 100 ⁰C for 15 minutes and inactivated by proteolytic enzymes such as trypsin. This approach has suggested the development of bacteriocin as a therapeutic agent for subclinical mastitis in dairy cattle.

Keywords: lactic acid bacteria, bacteriocin, staphylococcus aureus, S. agalactiae, E. coli, sub

Procedia PDF Downloads 132
17537 Polish Operational Plans During Cold War as Part of Warsaw Pact Strategic Culture

Authors: Wiktor Stypczyński

Abstract:

During the Cold War, both sides of the conflict developed advanced operational plans in case of a Third World War outbreak. In the Warsaw Pact, Soviet generals in Moscow chose targets for each army, but each country's General Staff had to create specific plans for their nation. This led to the creation of a Strategic Culture within the Warsaw Pact that was reflected in the plans of each army. This paper aims to showcase the Strategic Culture of the Warsaw Pact by using the plans of the People's Polish Army as an example. Examining one army at a time will allow for a more detailed and unique perspective on the matter. Understanding the past Strategic Culture is crucial in comprehending the current post-Soviet strategic situation in Eastern Europe, especially with the current situation in Ukraine. This paper is based on Benon Miśkiewicz's classic methodology of military history. While this methodology is the foundation, the research findings will also draw on the Strategic Studies methodology and the accomplishments of war and military science. Additionally, the Security and Political Studies methodology will be a crucial element in constructing the narrative.

Keywords: cold war, operetional plans, strategic culture, polish people's army

Procedia PDF Downloads 69
17536 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications

Authors: Hammad Aziz

Abstract:

Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.

Keywords: intumescent coating, char, SEM, TGA

Procedia PDF Downloads 429
17535 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 537
17534 Influence of 3D Printing Parameters on Surface Finish of Ceramic Hip Prostheses Fixed by Means of Osteointegration

Authors: Irene Buj-Corral, Ali Bagheri, Alejandro Dominguez-Fernandez

Abstract:

In recent years, use of ceramic prostheses as an implant in some parts of body has become common. In the present study, research has focused on replacement of the acetabulum bone, which is a part of the pelvis bone. Metallic prostheses have shown some problems such as release of metal ions into patient's blood. In addition, fracture of liners and squeezing between surface of femoral head and inner surface of acetabulum have been reported. Ceramic prostheses have the advantage of low debris and high strength, although they are more difficult to be manufactured than metallic ones. Specifically, new designs try to attempt an acetabulum in which the outer surface will be porous for proliferation of cells and fixation of the prostheses by means of osteointegration, while inner surface must be smooth enough to assure that the movement between femoral head and inner surface will be carried out with on feasibility. In the present study, 3D printing technologies are used for manufacturing ceramic prostheses. In Fused Deposition Modelling (FDM) process, 3D printed plastic prostheses are obtained by means of melting of a plastic filament and subsequent deposition on a glass surface. A similar process is applied to ceramics in which ceramic powders need to be mixed with a liquid polymer before depositing them. After 3D printing, parts are subjected to a sintering process in an oven so that they can achieve final strength. In the present paper, influence of printing parameters on surface roughness 3D printed ceramic parts are presented. Three parameter full factorial design of experiments was used. Selected variables were layer height, infill and nozzle diameter. Responses were average roughness Ra and mean roughness depth Rz. Regression analysis was applied to responses in order to obtain mathematical models for responses. Results showed that surface roughness depends mainly on layer height and nozzle diameter employed, while infill was found not to be significant. In order to get low surface roughness, low layer height and low infill should be selected. As a conclusion, layer height and infill are important parameters for obtaining good surface finish in ceramic 3D printed prostheses. However, use of too low infill could lead to prostheses with low mechanical strength. Such prostheses could not be able to bear the static and dynamic charges to which they are subjected once they are implanted in the body. This issue will be addressed in further research.

Keywords: ceramic, hip prostheses, surface roughness, 3D printing

Procedia PDF Downloads 195
17533 Zinc Oxide Thin Films Deposition by Spray Pyrolysis

Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf

Abstract:

Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

Keywords: precursor, thins films, spray pyrolysis, zinc oxide

Procedia PDF Downloads 317
17532 Deficit Drip Irrigation in Organic Cultivation of Aromatic Plant

Authors: Vasileios A. Giouvanis, Christos D. Papanikolaou, Dimitrios S. Dimakas, Maria A. Sakellariou-Makrantonaki

Abstract:

In countries with limited water resources, where the irrigation demands are higher than the 70% of the total water use, the demand for fresh water increases while the quality of this natural resource is downgraded. The aromatic and pharmaceutical plants hold a high position in the culture of the most civilizations through the centuries. The ‘Mountain Tea,’ species of the Greek flora, is part of a series of aromatic plants and herbs that are famous for their pharmaceutical properties as well as their byproducts and their essential oils. The aim of this research was to study the effects of full and deficit irrigation on the growing and productive characteristics of organically cultivated ‘Mountain Tea’ (Sideritis raeseri). The research took place at the University of Thessaly farm in Velestino, Magnesia - Central Greece, during the year 2017, which was the third growing season. The experiment consisted of three treatments in three replications. The experimental design was a fully randomized complete block. Surface drip irrigation was used to irrigate the experimental plots. In the first treatment, the 75% (deficit irrigation) of the daily water needs was applied. In the second treatment, the 100% (full irrigation) of the daily water needs was applied. The third treatment was not irrigated (rainfed). The crop water needs were calculated according to the daily measured evapotranspiration (ETc) using the Penman-Monteith method (FAO 56). The plants’ height, fresh and dry biomass production were measured. The results showed that only the irrigated ‘Mountain Tea’ can be cultivated at low altitude areas with satisfactory results. Moreover, there are no statistically significant differences (P < 0.05) at the growing and productive characteristics between full and deficit irrigation treatments, which proves that by deficit irrigation, an important amount of irrigation water can be saved.

Keywords: mountain tea, surface drip irrigation, deficit irrigation, water saving

Procedia PDF Downloads 161
17531 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate

Authors: Huanhuan Zhao, Bryony J. James

Abstract:

The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.

Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness

Procedia PDF Downloads 341