Search results for: nursing interventions classification
2302 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment
Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley
Abstract:
Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment
Procedia PDF Downloads 1402301 Understanding Level 5 Sport Student’s Perspectives of the Barriers to Progression and Attainment
Authors: Emma Whewell, Lee Waters, Mark Wall
Abstract:
This paper is a mixed methods investigation into the perceived barriers to attainment and progression. Initially entry level data was analysed to identify some of the key characteristics of the student cohort- for example entry route, age and ethnic background. Secondly, a phenomenological case study of the lived experiences of 15 level 5 sport and exercise students was conducted. It aimed to understand the complexities of success in higher education, far beyond entry qualifications, indices of deprivation and POLAR characteristics, to offer a first-hand account of student perceptions and interpretations of the barriers they face in progression, retention and completion on their programme. Using focus groups and interviews with students from a range of indices we offer a set of rich case studies exploring the interpretations of our students’ lived experiences and challenges. Findings demonstrate a complex set of circumstances that centre on managing workload, use of support services and aspirations of students that conflict with university priorities. Conclusions centre on the role of academic and pastoral support, assumptions about priorities of students and practical interventions to support achievement.Keywords: access and participation, higher education, progression and retention, barriers
Procedia PDF Downloads 1092300 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 1262299 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1032298 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2942297 Behavioural-Orientation and Continuity of Informality in Ghana
Authors: Yvonne Ayerki Lamptey
Abstract:
The expanding informal sector in developing countries and in Ghana in particular from the 1980s has now been aggravated by the growing population and downsizing in both the public and private sectors, with displaced workers finding alternative livelihoods in the informal sector. Youth and graduate unemployment also swell the numbers and further promote the continuity of the sector. Formal workers and institutions facilitate the growth and complicate demarcations between informality within the formal and informal sectors. In spite of its growth and increasing importance, the informal economy does not feature in policy debates and has often been neglected by the Ghana government. The phenomenon has evolved with modernity into myriad unimaginable forms. Indeed, actors within the sector often clash with the interventions provided by policy makers - because neither the operatives nor the activities they perform can be clearly defined. This study uses in-depth interviews to explore the behavioural nature of the informal workers in Ghana to understand how the operatives describe and perceive the sector, and to identify the factors that influence their drive to stay within the sector. This paper concludes that the operatives clearly distinguish between the formal and informal sectors and identify the characteristics and conditions that constitute the informal sector. Other workers are trapped between formality and informality. The findings also enumerate the push and pull factors contributing to the growth of the sector.Keywords: informal employment, informal sector, informal work, informality
Procedia PDF Downloads 3012296 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 802295 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region
Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher
Abstract:
The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.Keywords: irrigation suitability, TDS, salinity, SAR
Procedia PDF Downloads 3722294 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4662293 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 802292 Credit Risk Evaluation Using Genetic Programming
Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira
Abstract:
Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.Keywords: credit risk assessment, rule generation, genetic programming, feature selection
Procedia PDF Downloads 3532291 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5192290 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3322289 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 322288 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems
Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun
Abstract:
Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.Keywords: application management, hardware management, power electronics, building blocks
Procedia PDF Downloads 5212287 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1412286 Assessing Impacts of Climate Change on Rural Water Resources
Authors: Ntandoyenkosi Moyo
Abstract:
Majority of rural Eastern Cape villages of South Africa households do not have access to safe water supply. Due to changes in climatic conditions for example higher temperatures, these sources become not reliable in supplying adequate and safe water to the population. These rural populations due to the drying up of water resources have to find other alternative ways to get water. Climate change has an impact on the reliability of water resources and this has an impact on rural communities. This study seeks to establish what alternative ways do people use when affected by unfavorable conditions like less rainfall and increased temperatures. The study also seeks to investigate any local and provincial intervention in the provision of water to the village. Interventions can be in the form of programmes or initiatives that involve water supply strategies. The community should participate fully in making sure that their place is serviced. The study will identify households with improved sources (JOJO tanks) and those with unimproved sources (rivers) and investigate what alternatives they resort to when their sources dry up. The study also investigates community views on whether they have any challenges of water supply (reliability and adequacy) as required by section 27(1) (b) of the constitution which states that everyone should have access to safe and clean water.Keywords: rural water resources, temperature, improved sources, unimproved sources
Procedia PDF Downloads 3222285 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona
Procedia PDF Downloads 4562284 Net Zero Energy Schools: The Starting Block for the Canadian Energy Neutral K-12 Schools
Authors: Hamed Hakim, Roderic Archambault, Charles J. Kibert, Maryam Mirhadi Fard
Abstract:
Changes in the patterns of life in the late 20th and early 21st century have created new challenges for educational systems. Greening the physical environment of school buildings has emerged as a response to some of those challenges and led to the design of energy efficient K-12 school buildings. With the advancement in knowledge and technology, the successful construction of Net Zero Energy Schools, such as the Lady Bird Johnson Middle School demonstrates a cutting edge generation of sustainable schools, and solves the former challenge of attaining energy self-sufficient educational facilities. There are approximately twenty net zero energy K-12 schools in the U.S. of which about six are located in Climate Zone 5 and 6 based on ASHRAE climate zone classification. This paper aims to describe and analyze the current status of energy efficient and NZE schools in Canada. An attempt is made to study existing U.S. energy neutral strategies closest to the climate zones in Canada (zones 5 and 6) and identify the best practices for Canadian schools.Keywords: Canada K-12 schools, green school, energy efficient, net-zero energy schools
Procedia PDF Downloads 4042283 The Ethics of Jaw Wiring for Weight Loss by Dentists in South Africa: A Principlist Analysis
Authors: Jillian Gardner, Hilde D. Miniggio
Abstract:
The increasing prevalence of obesity has driven the pursuit of alternative weight loss strategies, such as jaw wiring (or ‘slimming wires’), a technique known in the medical community as maxillomandibular fixation, which has evolved beyond its original intention of treating temporomandibular joint disorders. Individuals have increasingly sought and utilized the procedure for weight loss purposes. Although legal in South Africa, this trend presents dentists with ethical dilemmas, as they face requests for interventions that prioritize aesthetic preferences over medical necessity. Drawing on scholarly literature and the four principles framework of Beauchamp and Childress, this ethical analysis offers guidance for dentists facing the ethical dilemma of patient requests for jaw wiring as a weight management intervention. The ethical analysis concludes that dentists who refuse autonomous requests to perform jaw wiring for purely weight loss purposes are ethically justified within the principlist framework in overriding these requests when the principles of non-maleficence and beneficence are at stake. The well-being and health of the patient, as well as societal and professional obligations, justify the refusal to perform jaw wiring purely for weight loss.Keywords: ethics, jaw wiring, maxillomandibular fixation, principlism, weight loss
Procedia PDF Downloads 572282 Corporate Governance and Corporate Sustainability: Evidence from a Developing Country
Authors: Edmund Gyimah
Abstract:
Using data from 146 annual reports of listed firms in Ghana for the period 2013-2020, this study presents indicative findings which inspire practical actions and future research. Firms which prepared and presented sustainability reports were excluded from this study for a coverage of corporate sustainability disclosures centred on annual reports. Also, corporate sustainability disclosures of the firms on corporate websites were not included in the study considering the tendency of updates which cannot easily be traced. The corporate sustainability disclosures in the annual reports since the commencement of the G4 Guidelines in 2013 have been below average for all the dimensions of sustainability and the general sustainability disclosures. Few traditional elements of the board composition such as board size and board independence could affect the corporate sustainability disclosures in the annual reports as well as the age of the firm, firm size, and industry classification of the firm. Sustainability disclosures are greater in sustainability reports than in annual reports, however, firms without sustainability reports should have a considerable amount of sustainability disclosures in their annual reports. Also, because of the essence of sustainability, this study suggests to firms to have sustainability committee perhaps, they could make a difference in disclosing the enough sustainability information even when they do not present sustainability information in stand-alone reports.Keywords: disclosures, sustainability, board, reports
Procedia PDF Downloads 1882281 Diet-Induced Epigenetic Transgenerational Inheritance
Authors: Gaby Fahmy
Abstract:
The last decades have seen a rise in metabolic disorders like diabetes, obesity, and fatty liver disease around the world. Environmental factors, especially nutrition, have contributed to this increase. Additionally, pre-conceptional parental nutritional choices have been shown to result in epigenetic modifications affecting gene expression during the developmental process in-utero. These epigenetic modifications have also been seen to extend to the following offspring in a trans-generational effect. This further highlights the significance and relevance of epigenetics and epigenetic tags, which were previously thought to be stripped in newly formed embryos. Suitable prenatal nutrition may partially counteract adverse outcomes caused by exposures to environmental contaminants, ultimately resulting in improved metabolic profiles like body weight and glucose homeostasis. This was seen in patients who were given dietary interventions like restrictive caloric intake, intermittent fasting, and time-restricted feeding. Changes in nutrition are pivotal in the regulation of epigenetic modifications that are transgenerational. For example, dietary choices such as fatty foods vs. vegetables and nuts in fathers were shown to significantly affect sperm motility and volume. This was pivotal in understanding the importance of paternal inheritance. Further research in the field is needed as it remains unclear how many generations are affected by these changes.Keywords: epigenetics, transgenerational, diet, fasting
Procedia PDF Downloads 962280 Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies
Authors: Mozhgan Aliakbari, Sara Moridpour
Abstract:
In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.Keywords: fatigue, time management, trucks, traffic safety
Procedia PDF Downloads 2892279 A Risk Management Approach to the Diagnosis of Attention Deficit-Hyperactivity Disorder
Authors: Lloyd A. Taylor
Abstract:
An increase in the prevalence of Attention Deficit-Hyperactivity Disorder (ADHD) highlights the need to consider factors that may be exacerbating symptom presentation. Traditional diagnostic criteria provide a little framework for healthcare providers to consider as they attempt to diagnose and treat children with behavioral problems. In fact, aside from exclusion criteria, limited alternative considerations are available, and approaches fail to consider the impact of outside factors that could increase or decrease the likelihood of appropriate diagnosis and success of interventions. This paper will consider specific systems-based factors that influence behavior and intervention successes that, when not considered, could account for the upsurge of diagnoses. These include understanding (1) challenges in the healthcare system, (2) the influence and impact of educators and the educational system, (3) technology use, and (4) patient and parental attitudes about the diagnosis of ADHD. These factors must be considered both individually and as a whole when considering both the increase in diagnoses and the subsequent increases in prescriptions for psychostimulant medication. A theoretical model based on a risk management approach will be presented. Finally, data will be presented that demonstrates pediatric provider satisfaction with this approach to diagnoses and treatment of ADHD as it relates to practice trends.Keywords: ADHD, diagnostic criteria, risk management model, pediatricians
Procedia PDF Downloads 942278 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4162277 Calculate Product Carbon Footprint through the Internet of Things from Network Science
Authors: Jing Zhang
Abstract:
To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment
Procedia PDF Downloads 1162276 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion
Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam
Abstract:
Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites
Procedia PDF Downloads 3212275 Ageing in Place: Facing the Challenges
Authors: Daniella Arieli
Abstract:
As human population is ageing, globally, we are faced with the need to find solutions for the care of older people who have reached the stage of needing full-time nursing care. Basically, there are two basic alternatives: 1. moving the individual to an institutional setting, a care home, or other form of residency, and 2. Arranging care for them in their own home, what is known as “ageing in place”. As ageing in place is becoming popular in many parts of the world, there is a need to understand its’ everyday consequences for all the involved parties: the care recipient, her/his family members and the live-in care workers. This is crucial because choosing home care means that the role of the care recipient’s relatives becomes very demanding and requires a level of support and responsibility that is often beyond what families can offer. This is particularly challenging when the older person faces dementia. While most Western countries offer a range of social services, many citizens around the world find the care provided by governments and associated social support structures insufficient. Individuals and families find themselves in the position of having to take on the responsibility themselves and find a path for the care of frail members, while facing considerable personal burdens and challenging dilemmas. The aim of this work is to discuss those challenges. The study is based on an ethnographic study of home care for older people in Israel.Keywords: aging in place, family caregivers, policy making, qualitative research
Procedia PDF Downloads 1432274 Psychological Capital as Pathways to Social Well-Being Among International Faculty in UAE: A Mediated-Moderated Study
Authors: Ejoke U. P., Smitha Dev., Madwuke Ann, DuPlessis E. D.
Abstract:
The study examines the relationship between psychological capital (PsyCap) and social well-being among international faculty members in the United Arab Emirates (UAE). The UAE has become a significant destination for global academic talent, yet challenges related to social integration, acceptance, and overall well-being persist among its international faculty. The study focuses on the predictive role of PsyCap, encompassing hope, efficacy, resilience, and optimism, in determining various dimensions of social well-being, including social integration, acceptance, contribution, actualization, and coherence. Additionally, the research investigates the potential moderating or mediating effects of institutional support and Faculty Job-Status position on the relationship between PsyCap and social well-being. Through structural equation modeling, we found that institutional support mediated the positive relationship between PsyCap and SWB and the permanent Faculty job-status position type strengthens the relationship between PsyCap and SWB. Our findings uncover the pathways through which PsyCap influences the social well-being outcomes of international faculty in the UAE. The findings will contribute to the development of tailored interventions and support systems aimed at enhancing the integration experiences and overall well-being of international faculty within the UAE academic community. Thus, fostering a more inclusive and thriving academic environment in the UAE.Keywords: faculty job-status, institutional-faculty, psychological capital, social well-being, UAE
Procedia PDF Downloads 532273 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 550