Search results for: linear predictive coding (LPC)
2489 Combined Localization, Beamforming, and Interference Threshold Estimation in Underlay Cognitive System
Authors: Omar Nasr, Yasser Naguib, Mohamed Hafez
Abstract:
This paper aims at providing an innovative solution for blind interference threshold estimation in an underlay cognitive network to be used in adaptive beamforming by secondary user Transmitter and Receiver. For the task of threshold estimation, blind detection of modulation and SNR are used. For the sake of beamforming several localization algorithms are compared to settle on best one for cognitive environment. Beamforming algorithms as LCMV (Linear Constraint Minimum Variance) and MVDR (Minimum Variance Distortion less) are also proposed and compared. The idea of just nulling the primary user after knowledge of its location is discussed against the idea of working under interference threshold.Keywords: cognitive radio, underlay, beamforming, MUSIC, MVDR, LCMV, threshold estimation
Procedia PDF Downloads 5842488 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 952487 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3532486 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 6022485 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2442484 Polycode Texts in Communication of Antisocial Groups: Functional and Pragmatic Aspects
Authors: Ivan Potapov
Abstract:
Background: The aim of this paper is to investigate poly code texts in the communication of youth antisocial groups. Nowadays, the notion of a text has numerous interpretations. Besides all the approaches to defining a text, we must take into account semiotic and cultural-semiotic ones. Rapidly developing IT, world globalization, and new ways of coding of information increase the role of the cultural-semiotic approach. However, the development of computer technologies leads also to changes in the text itself. Polycode texts play a more and more important role in the everyday communication of the younger generation. Therefore, the research of functional and pragmatic aspects of both verbal and non-verbal content is actually quite important. Methods and Material: For this survey, we applied the combination of four methods of text investigation: not only intention and content analysis but also semantic and syntactic analysis. Using these methods provided us with information on general text properties, the content of transmitted messages, and each communicants’ intentions. Besides, during our research, we figured out the social background; therefore, we could distinguish intertextual connections between certain types of polycode texts. As the sources of the research material, we used 20 public channels in the popular messenger Telegram and data extracted from smartphones, which belonged to arrested members of antisocial groups. Findings: This investigation let us assert that polycode texts can be characterized as highly intertextual language unit. Moreover, we could outline the classification of these texts based on communicants’ intentions. The most common types of antisocial polycode texts are a call to illegal actions and agitation. What is more, each type has its own semantic core: it depends on the sphere of communication. However, syntactic structure is universal for most of the polycode texts. Conclusion: Polycode texts play important role in online communication. The results of this investigation demonstrate that in some social groups using these texts has a destructive influence on the younger generation and obviously needs further researches.Keywords: text, polycode text, internet linguistics, text analysis, context, semiotics, sociolinguistics
Procedia PDF Downloads 1372483 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 1512482 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 1562481 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison
Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir
Abstract:
Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity
Procedia PDF Downloads 962480 Predictive Factors of Healthcare-Associated Infections and Antibiotic Use Patterns: A Cross-Sectional Survey at the Charles Nicolle Hospital of Tunis
Authors: Nouira Mariem, Ennigrou Samir
Abstract:
Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross-sectional study at the CNH with a unique passage per department (October-December 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency, and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included, with a mean age of 52 years and a sex ratio (female/male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent site infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261) revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased the risk of HAIs significantly. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under two or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an antibiotic stewardship program with continuous monitoring using repeated prevalence surveys, must be implemented to limit the frequency of these infections effectively.Keywords: prevalence, healthcare associated infection, antibiotic, Tunisia
Procedia PDF Downloads 892479 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.Keywords: vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism
Procedia PDF Downloads 4682478 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1532477 Design Analysis of Tilting System for Spacecraft Transportation
Authors: P. Naresh, Amir Iqbal
Abstract:
Satellite transportation is inevitable step during the course of integration testing and launch. Large satellites are transported in horizontal mode due to constraints on commercially available cargo bay dimensions & on road obstacles. To facilitate transportation of bigger size spacecraft in horizontal mode a tilting system is released. This tilting system consists of tilt table, columns, hinge pin, angular contact bearings, slewing bearing and linear actuators. The tilting system is very compact and easy to use however it is also serves the purpose of a fixture so it is of immense interest to know the stress and fundamental frequency of the system in transportation configuration. This paper discusses design aspects and finite element analysis of tilting system-cum-fixture using Hypermesh/Nastran.Keywords: tilt table, column, slewing bearing, stress, modal analysis
Procedia PDF Downloads 5772476 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger
Abstract:
The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.Keywords: boiling, metallic foam, heat transfer, plate heat exchanger
Procedia PDF Downloads 4792475 Real-Time Course Recommendation System for Online Learning Platforms
Authors: benabbess anja
Abstract:
This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions
Procedia PDF Downloads 122474 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1232473 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal
Authors: Linta Rose, Prasad K. Bhaskaran
Abstract:
Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind
Procedia PDF Downloads 2232472 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4082471 Comparative Evaluation of Ultrasound Guided Internal Jugular Vein Cannulation Using Measured Guided Needle and Conventional Size Needle for Success and Complication of Cannulation
Authors: Devendra Gupta, Vikash Arya, Prabhat K. Singh
Abstract:
Background: Ultrasound guidance could be beneficial in placing central venous catheters by improving the success rate, reducing the number of needle passes, and decreasing complications. Central venous cannulation set has a single puncture needle of a fixed length of 6.4 cm. However, the average distance of midpoint of IJV to the skin is around 1 cm to 2 cm. The long length needle has tendency to go in depth more than required and this is very common during learning period of any individual. Therefore, we devised a long needle with a guard which can be adjusted according to the required length. Methods: After approval from the institute ethics committee and patient’s written informed consent, a prospective, randomized, single-blinded controlled study was conducted. Adult patient aged of both sexes with ASA grade 1-2 undergoing surgery requiring internal jugular venous (IJV) access was included. After intubation, the head was rotated to the contralateral side at 30 degree head rotation on the position of the right IJV. The transducer probe a 6.5 to 13-MHz linear transducer (Sonosite, USA) had been placed at the apex of triangle with minimal pressure to avoid IJV compression. The distance from skin to midpoint of the right IJV and skin to anterior wall of Common Carotid Artery (CCA) had been done using B-mode duplex sonography with a 6.5 to 13-MHz linear transducer. Depending upon the results of randomization 420 patients had been divided into two groups of equal numbers (n=210). Group 1. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle; and Group 2. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle with guard fixed to a required length (length between skin and midpoint of IJV) by an experienced anesthesiologist. Independent observer has noted the number of attempts and occurrence of complications (CCA puncture, pneumothorax or adjacent tissue damage). Results: Demographic data were similar in both the group. The groups were comparable when considered for relationship of IJV to CCA. There was no significant difference between groups as regard to distance of midpoint of IJV to the skin (p<0.05). IJV cannulation was successfully done in single attempts in 180 (85.7%), in two attempts in 27 (12.9%) and three attempts in 3 (1.4%) in group I, whereas in single attempt in 207 (98.6%) and second attempts in 3 (1.4%) in group II (p <0.000). Incidence of carotid artery puncture was significantly more in group I (7.1%) compared to group II (0%) (p<0.000). Incidence of adjacent tissue puncture was significantly more in group I (8.6%) compared to group II (0%) (p<0.000). Conclusion: Therefore IJV catheterization using guard over the needle at predefined length with the help of real-time ultrasound results in better success rates and lower immediate complications.Keywords: ultrasound guided, internal jugular vein cannulation, measured guided needle, common carotid artery puncture
Procedia PDF Downloads 2262470 Tectonic Setting of Hinterland and Foreland Basins According to Tectonic Vergence in Eastern Iran
Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat
Abstract:
Various tectonic interpretations have been presented by different researchers to explain the geological evolution of eastern Iran, but there are still many ambiguities and many disagreements about the geodynamic nature of the Paleogene mountain range of eastern Iran. The purpose of this research is to clarify and discuss the tectonic position of the foreland and hinterland regions of eastern Iran from the tectonic perspective of sedimentary basins. In the tectonic model of oceanic subduction crust under the Afghan block, the hinterland is located to the east and on the Afghan block, and the foreland is located on the passive margin of the Sistan open ocean in the west. After the collision of the two microcontinents, the foreland basin must be located somewhere on the passive margin of the Lut block. This basin can deposit thick Paleocene to Oligocene sediments on the Cretaceous and older sediments. Thrust faults here will move towards the west. If we accept the subduction model of the Sistan Ocean under the Lut Block, the hinterland is located to the west towards the Lut Block, and the foreland basin is located towards the Sistan Ocean in the east. After the collision of the two microcontinents, the foreland basin with Paleogene sediments should expand on the Sefidaba basin. Thrust faults here will move towards the east. If we consider the two-sided subduction model of the ocean crust under both Lut and Afghan continental blocks, the tectonic position of the foreland and hinterland basins will not change and will be similar to the one-sided subduction models. After the collision of two microcontinents, the foreland basin should develop in the central part of the eastern Iranian orogen. In the oroclinic buckling model, the foreland basin will continue not only in the east and west but continuously in the north as well. In this model, since there is practically no collision, the foreland basin is not developed, and the remnants of the Sistan Ocean ophiolites and their deep turbidite sediments appear in the axial part of the mountain range, where the Neh and Khash complexes are located. The structural data from this research in the northern border of the Sistan belt and the Lut block indicate the convergence of the tectonic vergence directions towards the interior of the Sistan belt (in the Ahangaran area towards the southwest, in the north of Birjand towards the south-southeast, in the Sechengi area to the southeast). According to this research, not only the general movement of thrust sheets do not follow the linear orogeny models, but the expected active foreland basins have not been formed in the mentioned places in eastern Iran. Therefore, these results do not follow previous tectonic models for eastern Iran (i.e., rifting of eastern Iran continental crust and subsequent linear collision of the Lut and Afghan blocks), but it seems that was caused by buckling model in the Late Eocene-Oligocene.Keywords: foreland, hinterland, tectonic vergence, orocline buckling, eastern Iran
Procedia PDF Downloads 742469 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography
Procedia PDF Downloads 4382468 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement
Authors: M. Naji, A. R. Khalim, M. Naji
Abstract:
Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction
Procedia PDF Downloads 2932467 A New Mathematical Model for Scheduling Preventive Maintenance and Renewal Projects of Multi-Unit Systems; Application to Railway Track
Authors: Farzad Pargar
Abstract:
We introduce the preventive maintenance and renewal scheduling problem for a multi-unit system over a finite and discretized time horizon. Given the latest possible time for carrying out the next maintenance and renewal projects after the previous ones and considering several common set-up costs, the introduced scheduling model tries to minimize the cost of projects by grouping them and simultaneously finding the optimal balance between doing maintenance and renewal. We present a 0-1 pure integer linear programming that determines which projects should be performed together on which location and in which period (e.g., week or month). We consider railway track as a case for our study and test the performance of the proposed model on a set of test problems. The experimental results show that the proposed approach performs well.Keywords: maintenance, renewal, scheduling, mathematical programming model
Procedia PDF Downloads 6912466 Simulation of Behaviour Dynamics and Optimization of the Energy System
Authors: Iva Dvornik, Sandro Božić, Žana Božić Brkić
Abstract:
System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel).Keywords: system dynamics, modelling, centrifugal pump, turbine, gases, continuous and discrete simulation, heuristic optimisation
Procedia PDF Downloads 1112465 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis
Procedia PDF Downloads 1552464 Directionally-Sensitive Personal Wearable Radiation Dosimeter
Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe
Abstract:
In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.Keywords: dose rate, Geant4 package, radiation dosimeter, radioactive source direction
Procedia PDF Downloads 3292463 Study of Seismic Behavior of an Earth Dam with Sealing Walls: The Case of Kef Eddir’s Dam, Tipaza, Algeria
Authors: M. Boumaiza, S. Mohamadi, B. Moussai
Abstract:
In this article the study of the seismic response of an earth dam with sealing walls has been made by introducing the effect of the change of position and depth of the sealing wall and the effect of non-linear behavior of soil of the foundation by taking into account the variation of the viscous damping and shear modulus in each layer of soil on the seismic response of the dam. As a case study, we take the Algerian dam Kef-Eddir which lies in the far west of the territory of the Wilaya of Tipaza (wadi Eddamous), classified according to the RPA 2003 as a high seismicity zone (zone III). With a height of 71m above the foundation and a width of 478m. The seismic event applied to the rock, is the earthquake of Chenoua (29 October, 1989), with a magnitude Mw=6 that hit the region.Keywords: earth dam, earthquake, sealing walls, viscous damping
Procedia PDF Downloads 6102462 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method
Authors: Ozden Saygili, Eser Cakti
Abstract:
Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures
Procedia PDF Downloads 3202461 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks
Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell
Abstract:
A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks
Procedia PDF Downloads 1632460 Normalizing Logarithms of Realized Volatility in an ARFIMA Model
Authors: G. L. C. Yap
Abstract:
Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.Keywords: Gaussian process, long-memory, normalization, value-at-risk, volatility, Whittle estimator
Procedia PDF Downloads 356