Search results for: gender classification
2317 Effects of a School-based Mindfulness Intervention on Stress Levels and Emotion Regulation of Adolescent Students Enrolled in an Independent School
Authors: Tracie Catlett
Abstract:
Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students, in particular, experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class, where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences, as they relate to stress and emotions, revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress
Procedia PDF Downloads 612316 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 4872315 ExactData Smart Tool For Marketing Analysis
Authors: Aleksandra Jonas, Aleksandra Gronowska, Maciej Ścigacz, Szymon Jadczak
Abstract:
Exact Data is a smart tool which helps with meaningful marketing content creation. It helps marketers achieve this by analyzing the text of an advertisement before and after its publication on social media sites like Facebook or Instagram. In our research we focus on four areas of natural language processing (NLP): grammar correction, sentiment analysis, irony detection and advertisement interpretation. Our research has identified a considerable lack of NLP tools for the Polish language, which specifically aid online marketers. In light of this, our research team has set out to create a robust and versatile NLP tool for the Polish language. The primary objective of our research is to develop a tool that can perform a range of language processing tasks in this language, such as sentiment analysis, text classification, text correction and text interpretation. Our team has been working diligently to create a tool that is accurate, reliable, and adaptable to the specific linguistic features of Polish, and that can provide valuable insights for a wide range of marketers needs. In addition to the Polish language version, we are also developing an English version of the tool, which will enable us to expand the reach and impact of our research to a wider audience. Another area of focus in our research involves tackling the challenge of the limited availability of linguistically diverse corpora for non-English languages, which presents a significant barrier in the development of NLP applications. One approach we have been pursuing is the translation of existing English corpora, which would enable us to use the wealth of linguistic resources available in English for other languages. Furthermore, we are looking into other methods, such as gathering language samples from social media platforms. By analyzing the language used in social media posts, we can collect a wide range of data that reflects the unique linguistic characteristics of specific regions and communities, which can then be used to enhance the accuracy and performance of NLP algorithms for non-English languages. In doing so, we hope to broaden the scope and capabilities of NLP applications. Our research focuses on several key NLP techniques including sentiment analysis, text classification, text interpretation and text correction. To ensure that we can achieve the best possible performance for these techniques, we are evaluating and comparing different approaches and strategies for implementing them. We are exploring a range of different methods, including transformers and convolutional neural networks (CNNs), to determine which ones are most effective for different types of NLP tasks. By analyzing the strengths and weaknesses of each approach, we can identify the most effective techniques for specific use cases, and further enhance the performance of our tool. Our research aims to create a tool, which can provide a comprehensive analysis of advertising effectiveness, allowing marketers to identify areas for improvement and optimize their advertising strategies. The results of this study suggest that a smart tool for advertisement analysis can provide valuable insights for businesses seeking to create effective advertising campaigns.Keywords: NLP, AI, IT, language, marketing, analysis
Procedia PDF Downloads 862314 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 1162313 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1432312 The Differences between Direct Examination and ELISA Test during the Diagnosis of Fasciolosis in Jaundiced Slaughtered Sheep in Iraq
Authors: Azad A. Meerkhan, Alaa Hani Razak, Bayan M. S. Younis
Abstract:
The efficiency of enzyme-linked immunosorbent assay (ELISA) in sheep infected with Fasciola hepatica was studied. 232 jaundiced sheep among 5208 sheep slaughter in the Duhok abattoir (regardless of the age and gender) between the period of May. 2012 to Oct. 2012 were examined by direct examination (Searching of adult flukes in the bile duct) and by Enzyme-linked immunosorbent assay (ELISA) to detect the prevalence of fascioliasis in the studied population which showed a high observed infection ratio in Sep. 2012 (12.2%) with the high (ELISA) result of infection in May. 2012 (25.36%). Significant differences were found between the two ways in all of the months with the highest difference in May. 2012 and the net deference between the both ways was 6.91%.Keywords: fascioliasis, Fasciola hepatica, layers, liver fluk, ELISA, direct examination
Procedia PDF Downloads 3222311 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2252310 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia
Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud
Abstract:
Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma
Procedia PDF Downloads 642309 Peculiarities of Comprehending the Subjective Well-Being by Student with High and Low Level of Emotional Intelligent
Authors: Veronika Pivkina, Alla Kim, Khon Nataliya
Abstract:
Actuality of the present study is defined first of all the role of subjective well-being problem in modern psychology and the comprehending of subjective well-being by current students. Purpose of this research is to educe peculiarities of comprehending of subjective well-being by students with various levels of emotional intelligent. Methods of research are adapted Russian-Language questionnaire of K. Riff 'The scales of psychological well-being'; emotional intelligent questionnaire of D. V. Lusin. The research involved 72 student from different universities and disciplines aged between 18 and 24. Analyzing the results of the studies, it can be concluded that the understanding of happiness in different groups of students with high and low levels of overall emotional intelligence is different, as well as differentiated by gender. Students with higher level of happiness possess more capacity and higher need to control their emotions, to cause and maintain the desired emotions and control something undesirable.Keywords: subjective well-being, emotional intelligent, psychology of comprehending, students
Procedia PDF Downloads 3752308 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 832307 Three Star Hotels in Sukhumvit Area of Bangkok and the Potential to Be in Tourism Industry Joining the ASEAN Community
Authors: Benjaporn Yaemjamuang, Sasitorn Jetanont
Abstract:
The three star hotels in Sukhumvit area of Bangkok and the potential to be in the tourism industry joining the ASEAN Community were studied. The findings revealed that the representative samples satisfy the potential of hotel services at a high level in all aspects. The level of service satisfaction by gender is not different. On the other hand, for different ethnic origins, ages, occupations, levels of education, the satisfaction on the services varies in significance level of 0.05. Factors associated with satisfaction in the services of the hotel include a potential location and environment. It was also found that satisfaction with the service aspects are related as follows: services (r = .810), food (r = .807), booking service (r = .768), room condition (r = .762) and security (r =.756) which is aligned with the coefficient .826.Keywords: three star hotel, ASEAN community, potential in tourism industry, Bangkok
Procedia PDF Downloads 3022306 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach
Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno
Abstract:
Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test
Procedia PDF Downloads 3002305 Errors in Selected Writings of EFL Students: A Study of Department of English, Taraba State University, Jalingo, Nigeria
Authors: Joy Aworookoroh
Abstract:
Writing is one of the active skills in language learning. Students of English as a foreign language are expected to write efficiently and proficiently in the language; however, there are usually challenges to optimal performance and competence in writing. Errors, on the other hand, in a foreign language learning situation are more positive than negative as they provide the basis for solving the limitations of the students. This paper investigates the situation in the Department of English, Taraba State University Jalingo. Students are administered a descriptive writing test across different levels of study. The target students are multilingual with an L1 of either Kuteb, Hausa or Junkun languages. The essays are accessed to identify the different kinds of errors in them alongside the classification of the order. Errors of correctness, clarity, engagement, and delivery were identified. However, the study identified that the degree of errors reduces alongside the experience and exposure of the students to an EFL classroom.Keywords: errors, writings, descriptive essay, multilingual
Procedia PDF Downloads 632304 Interdependence of Vocational Skills and Employability Skills: Example of an Industrial Training Centre in Central India
Authors: Mahesh Vishwakarma, Sadhana Vishwakarma
Abstract:
Vocational education includes all kind of education which can help students to acquire skills related to a certain profession, art, or activity so that they are able to exercise that profession, art or activity after acquiring such qualification. However, in this global economy of the modern world, job seekers are expected to have certain soft skills over and above the technical knowledge and skills acquired in their areas of expertise. These soft skills include but not limited to interpersonal communication, understanding, personal attributes, problem-solving, working in team, quick adaptability to the workplace environment, and other. Not only the hands-on, job-related skills, and competencies are now being sought by the employers, but also a complex of attitudinal dispositions and affective traits are being looked by them in their prospective employees. This study was performed to identify the employability skills of technical students from an Industrial Training Centre (ITC) in central India. It also aimed to convey a message to the students currently on the role, that for them to remain relevant in the job market, they would need to constantly adapt to changes and evolving requirements in the work environment, including the use of updated technologies. Five hypotheses were formulated and tested on the employability skills of students as a function of gender, trade, work experience, personal attributes, and IT skills. Data were gathered with the help of center’s training officers who approached 200 recently graduated students from the center and administered the instrument to students. All 200 respondents returned the completed instrument. The instrument used for the study consisted of 2 sections; demographic details and employability skills. To measure the employability skills of the trainees, the instrument was developed by referring to the several instruments developed by the past researchers for similar studies. The 1st section of the instrument of demographic details recorded age, gender, trade, year of passing, interviews faced, and employment status of the respondents. The 2nd section of the instrument on employability skills was categorized into seven specific skills: basic vocational skills; personal attributes; imagination skills; optimal management of resources; information-technology skills; interpersonal skills; adapting to new technologies. The reliability and validity of the instrument were checked. The findings revealed valuable information on the relationship and interdependence of vocational education and employability skills of students in the central Indian scenario. The findings revealed a valuable information on supplementing the existing vocational education programs with few soft skills and competencies so as to develop a superior workforce much better equipped to face the job market. The findings of the study can be used as an example by the management of government and private industrial training centers operating in the other parts of the Asian region. Future research can be undertaken on a greater population base from different geographical regions and backgrounds for an enhanced outcome.Keywords: employability skills, vocational education, industrial training centers, students
Procedia PDF Downloads 1332303 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 782302 Destination Image: A Case Study of International Tourists Who Revisit Thailand
Authors: Aticha Kwaengsopha, Kevin Wongleedee
Abstract:
Destination image can cause an increase and decrease in the growth rate of international tourists visiting Thailand. This paper drew upon data collected from an international tourist survey conducted in Bangkok, Thailand during January to March of 2014. The survey was structured primarily to obtain international tourists’ opinions towards the importance of destination image factors that they encountered during their trip in Thailand. A total of 200 respondents were elicited as data input for mean, SD, and t-test. The findings revealed that the overall level of importance of these factors was not very high. The findings also revealed the three most important factors as tourist experience, interesting place, and pleasing destination. In addition, the result for t-test revealed that there was not much effect from gender differences in opinions of the level concerning importance for destination image factors.Keywords: destination image, international tourists, Thailand, revisit
Procedia PDF Downloads 3372301 Impact of Chess Intervention on Cognitive Functioning of Children
Authors: Ebenezer Joseph
Abstract:
Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.Keywords: chess, intelligence, creativity, children
Procedia PDF Downloads 2572300 An Automated Approach to Consolidate Galileo System Availability
Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt
Abstract:
Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.Keywords: availability, data quality, system performance, Galileo, aerospace
Procedia PDF Downloads 1672299 Learners’ Reactions to Writing Activities in an Elementary Algebra Classroom
Authors: Early Sol A. Gadong, Lourdes C. Zamora, Jonny B. Pornel, Aurora Fe C. Bautista
Abstract:
Various research has shown that writing allows students to engage in metacognition and provides them with a venue to communicate their disposition towards what they are learning. However, few studies have explored students’ feelings about the incorporation of such writing activities in their mathematics classes. Through reflection sheets, group discussions, and interviews, this mixed-methods study explored students’ perceptions and insights on supplementary writing activities in their Elementary Algebra class. Findings revealed that while students generally have a positive regard for writing activities, they have conflicting views about how writing activities can help them in their learning. A big majority contend that writing activities can enhance the learning of mathematical content and attitudes towards mathematics if they allow students to explore and synthesize what they have learned and reflected on their emotional disposition towards mathematics. Also, gender does not appear to play a significant role in students’ reactions to writing activities.Keywords: writing in math, metacognition, affective factors in learning, elementary algebra classroom
Procedia PDF Downloads 4432298 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.Keywords: image fusion, iris recognition, local binary pattern, wavelet
Procedia PDF Downloads 3672297 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 942296 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.Keywords: data mining, knowledge discovery in databases, prediction models, student success
Procedia PDF Downloads 4072295 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods
Authors: Juan Heredia, Naci Dilekli
Abstract:
The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing
Procedia PDF Downloads 1642294 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 4152293 Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data
Authors: Navya Saira George, Patroba Achola Odera
Abstract:
This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s.Keywords: Geographical Information Systems, Kochi City, Land use/cover, Remote Sensing, Urban Sprawl
Procedia PDF Downloads 1302292 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1972291 Dopamine and Serotonin Levels in Blood Samples of Jordanian Children Who Stutter
Authors: Mazin Alqhazo, Ayat Bani Rashaid
Abstract:
This study examines the levels of dopamine and serotonin in blood samples of children who stutter compared with normal fluent speakers. Blood specimens from 50 children who stutter (6 females, 44 males) and 50 normal children matched age and gender were collected for the purpose of the current study. The concentrations of dopamine and serotonin were measured using the 1100 series high-performance liquid chromatography coupled with ultraviolet detector instrument (HPLC-UV). It was revealed that dopamine level in the blood samples of stuttering group and fluent group was not significant (P = 0.769), whereas the level of serotonin was significantly higher in the blood samples of stuttering group than the blood samples of fluent normal group (P = 0.015). It is concluded that serotonin blockers could be used in future studies to evaluate its role as a medication for the treatment of stuttering.Keywords: dopamine, serotonin, stuttering, fluent speakers
Procedia PDF Downloads 1602290 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 732289 OPEN-EmoRec-II-A Multimodal Corpus of Human-Computer Interaction
Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue
Abstract:
OPEN-EmoRecII is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (mimic reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and mimic annotations.Keywords: open multimodal emotion corpus, annotated labels, intelligent interaction
Procedia PDF Downloads 4162288 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials
Authors: Matthieu-P. Schapranow
Abstract:
Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering
Procedia PDF Downloads 493