Search results for: forest fire fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2953

Search results for: forest fire fuel

613 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 105
612 Simulation of Turboexpander Potential in a City Gate Station under Variations of Feed Characteristic

Authors: Tarannom Parhizkar, Halle Bakhteeyar

Abstract:

This paper presents a feasibility assessment of an expansion system applied to the natural gas transportation process in Iran. Power can be generated from the pressure energy of natural gas along its supply chain at various pressure reduction points by using turboexpanders. This technology is being applied in different countries around the world. The system consists of a turboexpander reducing the natural gas pressure and providing mechanical energy to drive electric generator. Moreover, gas pre-heating, required to prevent hydrate formation, is performed upstream of expansion stage using burner. The city gate station (CGS) has a nominal flow rate in range of 45000 to 270000 cubic meters per hour and a pressure reduction from maximum 62 bar at the upstream to 6 bar. Due to variable feed pressure and temperature in this station sensitivity analysis of generated electricity and required heat is performed. Results show that plant gain is more sensible to pressure variation than temperature changes. Furthermore, using turboexpander to reduce the pressure result in an electrical generation of 2757 to 17574 kW with the value of approximately 4 million US$ per year. Moreover, the required heat range to prevent a hydrate formation is almost 2189 to 14157 kW. To provide this heat, a burner is used with a maximum annual cost of 268,640 $ burner fuel. Therefore, the actual annual benefit of proposed plant modification is approximately over 6,5 million US$.

Keywords: feasibility study, simulation, turboexpander, feed characteristic

Procedia PDF Downloads 499
611 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia

Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota

Abstract:

The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.

Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species

Procedia PDF Downloads 347
610 Pyrolysis of the Reed (Phragmites australis) and Evaluation of Pyrolysis Products

Authors: Ahmet Helvaci, Selcuk Dogan

Abstract:

Reed in especially almost all the lakes in Western Anatolia grows naturally. Due to the abundance of reed, pyrolysis of reed is very economical and practical application. In this study, it is aimed to determine the optimum conditions for the pyrolysis of the reed which is a cheap and abundant raw material and to evaluate pyrolysis products. For this purpose, reed was used obtained from Eber Lake located in the borders of Bolvadin county of Afyonkarahisar. Optimum pyrolysis conditions have been determined by examining the effects of changes in pyrolysis temperature and pyrolysis time. The evaluation of the obtained liquid and solid pyrolysis products has been investigated. Especially evaluability of solid carbon black production of tires has been investigated. Tire samples were prepared with carbon black samples obtained as a result of the pyrolysis process at different temperatures. Then, performance tests were made and compared with reference carbon blacks, used in the market and standards. At the same time, surface area measurement analysis of carbon black samples was made and compared again with reference carbon blacks. In addition, the fuel values of liquid products were also determined by calorimeter. It has been determined that the best surface area (about 370 m²/g) for carbon black samples, for tire production is 40 minutes at 500ᵒC. It was also found that the best result for evaluation studies in tire production was carbon black samples obtained at 450ᵒC pyrolysis temperature. In addition, it was seen that the calorimetry results of the liquid product obtained during 60 minutes of pyrolysis were quite good (around 5500 kcal/kg).

Keywords: evaluation of products, optimization, pyrolysis, reed

Procedia PDF Downloads 192
609 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 321
608 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray

Authors: Ophir Nave

Abstract:

In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.

Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems

Procedia PDF Downloads 217
607 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 81
606 A Multi-Objective Gate Assignment Model Based on Airport Terminal Configuration

Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari

Abstract:

Assigning aircrafts’ activities to appropriate gates is one the most challenging issues in airport authorities’ multiple criteria decision making. The potential financial loss due to imbalances of demand and supply in congested airports, higher occupation rates of gates, and the existing restrictions to expand facilities provide further evidence for the need for an optimal supply allocation. Passengers walking distance, towing movements, extra fuel consumption (as a result of awaiting longer to taxi when taxi conflicts happen at the apron area), etc. are the major traditional components involved in GAP models. In particular, the total cost associated with gate assignment problem highly depends on the airport terminal layout. The study herein presents a well-elaborated literature review on the topic focusing on major concerns, applicable variables and objectives, as well as proposing a three-objective mathematical model for the gate assignment problem. The model has been tested under different concourse layouts in order to check its performance in different scenarios. Results revealed that terminal layout pattern is a significant parameter in airport and that the proposed model is capable of dealing with key constraints and objectives, which supports its practical usability for future decision making tools. Potential solution techniques were also suggested in this study for future works.

Keywords: airport management, terminal layout, gate assignment problem, mathematical modeling

Procedia PDF Downloads 228
605 A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil

Authors: Ratna Dewi Kusumaningtyas, Riris Pristiyani, Heny Dewajani

Abstract:

Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time.

Keywords: biodiesel, interesterification, glycerol-free, triacetine, jatropha oil

Procedia PDF Downloads 423
604 Phoenix dactylifera Ecosystem in Morocco: Ecology, Socio Economic Role and Constraints to Its Development

Authors: Mohammed Sghir Taleb

Abstract:

Introduction The date palm (Phoenix dactylifera L.) represents an essential element of the oasis ecosystem for Saharan and pre-Saharan regions of Morocco. It plays an important role, not only due to its economic importance, but also its ecological adaptation to, firstly, to ensure necessary protection for crops against underlying warm and dry sales, and secondly to contribute to the fight against desertification. This is one of the oldest cultivated plant species best adapted to difficult climatic conditions of the Saharan and pre-Saharan regions, because of its ecological requirements and economically most suitable for investing in oasis agriculture. Methodology The methodology is mainly based on a literature review of principal theses and projects for the conservation of flora and vegetation. Results The date palm has multiple uses. Indeed, it produces fruits rich in nutrients, provides a multitude of secondary products and generates needed revenue for the survival of oasis populations. In Morocco, the development and modernization of the date palm sector face, both upstream and downstream of the industry, several major constraints. In addition to climate constraints (prolonged drought), in its environment (lack of water resources), to the incessant invasion of disease Bayoud, Moroccan palm ecosystem suffers from a low level of technical and traditional practices prevail and traditional, from the choice of variety and site preparation up to harvesting and recycling of products. Conclusion The date palm plays an important role in the socioeconomic development of local and national level. However, this ecosystem however, is subject to numerous degradation factors caused by anthropogenic action and climate change. to reverse the trends, several programs have been developed by Morocco for the restoration of degraded areas and the development of the Phoenix dactylifera ecosystem to meet the needs of local populations and the development of the national economy.

Keywords: efforts, flora, ecosystem, forest, conservation, Morocco

Procedia PDF Downloads 85
603 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics

Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman

Abstract:

Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.

Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning

Procedia PDF Downloads 169
602 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review

Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek

Abstract:

High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.

Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste

Procedia PDF Downloads 223
601 Medical versus Non-Medical Students' Opinions about Academic Stress Management Using Unconventional Therapies

Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau, Dong Hun Kwak, Nicolae-Alexandru Colceriu

Abstract:

Background: Stress management (SM) is a topic of great academic interest and equally a task to accomplish. In addition, it is recognized the beneficial role of unconventional therapies (UCT) in stress modulation. Aims: The aim was to evaluate medical (MS) versus non-medical students’ (NMS) opinions about academic stress management (ASM) using UCT. Methods: MS (n=103, third year males and females) and NMS (n=112, males and females, from humanities faculties, different years of study), out of their academic program, voluntarily answered to a questionnaire concerning: a) Classification of the four most important academic stress factors; b) The extent to which their daily life influences academic stress; c) The most important SM methods they know; d) Which of these methods they are applying; e) the UCT they know or about which they have heard; f) Which of these they know to have stress modulation effects; g) Which of these UCT, participants are using or would like to use for modulating stress; and if participants use UTC for their own choose or following a specialist consultation in those therapies (SCT); h) If they heard about the following UCT and what opinion they have (using visual analogue scale) about their use (following CST) for the ASM: Phytotherapy (PT), apitherapy (AT), homeopathy (H), ayurvedic medicine (AM), traditional Chinese medicine (TCM), music therapy (MT), color therapy (CT), forest therapy (FT). Results: Among the four most important academic stress factors, for MS more than for NMS, are: busy schedule, large amount of information taught; high level of performance required, reduced time for relaxing. The most important methods for SM that MS and NMS know, hierarchically are: listen to music, meeting friends, playing sport, hiking, sleep, regularly breaks, seeing positive side, faith; of which, NMS more than MS, are partially applying to themselves. UCT about which MS and less NMS have heard, are phytotherapy, apitherapy, acupuncture, reiki. Of these UTC, participants know to have stress modulation effects: some plants, bee’s products and music; they use or would like to use for ASM (the majority without SCT) certain teas, honey and music. Most of MS and only some NMS heard about PT, AT, TCM, MT and much less about H, AM, CT, TT. NMS more than MS, would use these UCT, following CST. Conclusions: 1) Academic stress is similarly reflected in MS and NMS opinions. 2) MS and NMS apply similar but very few UCT for stress modulation. 3) Information that MS and NMS have about UCT and their ASM application is reduced. 4) It is remarkable that MS and especially NMS, are open to UCT use for ASM, following an SCT.

Keywords: academic stress, stress management, stress modulation, medical students, non-medical students, unconventional therapies

Procedia PDF Downloads 354
600 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 84
599 DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia

Authors: AbdelRahman A. Faragalla, Mohamed H. Alqhtani, Mohamed M. M.Ahmed

Abstract:

Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated.

Keywords: DNA fingerprinting, Western Saudi Arabia, DNA primers, RAPD

Procedia PDF Downloads 428
598 Analysis of Pathogen Populations Occurring in Oilseed Rape Using DNA Sequencing Techniques

Authors: Elizabeth Starzycka-Korbas, Michal Starzycki, Wojciech Rybinski, Mirosława Dabert

Abstract:

For a few years, the populations of pathogenic fungi occurring in winter oilseed rape in Malyszyn were analyzed. Brassica napus L. in Poland and in the world is a source of energy for both the men (oil), and animals, as post-extraction middling, as well as a motor fuel (oil, biofuel) therefore studies of this type are very important. The species composition of pathogenic fungi can be an indicator of seed yield. The occurrence of oilseed rape pathogens during several years were analyzed using the sequencing method DNA ITS. The results were compared in the gene bank using the program NCBI / BLAST. In field conditions before harvest of oilseed rape presence of pathogens infesting B. napus has been assessed. For example, in 2015, 150 samples have been isolated and applied to PDA medium for the identification of belonging species. From all population has been selected mycelium of 83 isolates which were sequenced. Others (67 isolates) were pathogenic fungi of the genus Alternaria which are easily to recognize. The population of pathogenic species on oilseed rape have been identified after analyzing the DNA ITS and include: Leptosphaeria sp. 38 (L. maculans 25, L. biglobosa 13), Alternaria sp. 29, Fusarium sp. 3, Sclerotinia sclerotiorum 7, heterogeneous 6, total of 83 isolates. The genus Alternaria sp. fungi wear the largest share of B. napus pathogens in particular years. Another dangerous species for oilseed rape was Leptosphaeria sp. Populations of pathogens in each year were different. The number of pathogens occurring in the field and their composition is very important for breeders and farmers because of the possible selection of the most resistant genotypes for sowing in the next growing season.

Keywords: B. napus, DNA ITS Sequencing, pathogenic fungi, population

Procedia PDF Downloads 284
597 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 148
596 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House

Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal

Abstract:

In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.

Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction

Procedia PDF Downloads 196
595 Volunteers’ Preparedness for Natural Disasters and EVANDE Project

Authors: A. Kourou, A. Ioakeimidou, E. Bafa, C. Fassoulas, M. Panoutsopoulou

Abstract:

The role of volunteers in disaster management is of decisive importance and the need of their involvement is well recognized, both for prevention measures and for disaster management. During major catastrophes, whereas professional personnel are outsourced, the role of volunteers is crucial. In Greece experience has shown that various groups operating in the civil protection mechanism like local administration staff or volunteers, in many cases do not have the necessary knowledge and information on best practices to act against natural disasters. One of the major problems is the lack of volunteers’ education and training. In the above given framework, this paper presents the results of a survey aimed to identify the level of education and preparedness of civil protection volunteers in Greece. Furthermore, the implementation of earthquake protection measures at individual, family and working level, are explored. More specifically, the survey questionnaire investigates issues regarding pre-earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans in the workplace. The questionnaires were administered to citizens from different regions of the country and who attend the civil protection training program: “Protect Myself and Others”. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self-protective actions; b) existence of emergency planning at home; c) existence of emergency planning at workplace (hazard mitigation actions, evacuation plan, and performance of drills); and, d) respondents` perception about their level of earthquake preparedness. The results revealed a serious lack of knowledge and preparedness among respondents. Taking into consideration the aforementioned gap and in order to raise awareness and improve preparedness and effective response of volunteers acting in civil protection, the EVANDE project was submitted and approved by the European Commission (EC). The aim of that project is to educate and train civil protection volunteers on the most serious natural disasters, such as forest fires, floods, and earthquakes, and thus, increase their performance.

Keywords: civil protection, earthquake, preparedness, volunteers

Procedia PDF Downloads 240
594 Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem

Authors: Julio C. Ferreira, Maria T. A. Steiner

Abstract:

The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability.

Keywords: Asymmetric Traveling Salesman Problem, Green Vehicle Routing Problem, Multi-objective Optimization, p-Median Capacitated Problem

Procedia PDF Downloads 110
593 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 93
592 Farmers’ Perception and Response to Climate Change Across Agro-ecological Zones in Conflict-Ridden Communities in Cameroon

Authors: Lotsmart Fonjong

Abstract:

The livelihood of rural communities in the West African state of Cameroon, which is largely dictated by natural forces (rainfall, temperatures, and soil), is today threatened by climate change and armed conflict. This paper investigates the extent to which rural communities are aware of climate change, how their perceptions of changes across different agro-ecological zones have impacted farming practices, output, and lifestyles, on the one hand, and the extent to which local armed conflicts are confounding their efforts and adaptation abilities. The paper is based on a survey conducted among small farmers in selected localities within the forest and savanna ecological zones of the conflict-ridden Northwest and Southwest Cameroon. Attention is paid to farmers’ gender, scale, and type of farming. Farmers’ perception of/and response to climate change are analysed alongside local rainfall and temperature data and mobilization for climate justice. Findings highlight the fact that farmers’ perception generally corroborates local climatic data. Climatic instability has negatively affected farmers’ output, food prices, standards of living, and food security. However, the vulnerability of the population varies across ecological zones, gender, and crop types. While these factors also account for differences in local response and adaptation to climate change, ongoing armed conflicts in these regions have further complicated opportunities for climate-driven agricultural innovations, inputs, and exchange of information among farmers. This situation underlines how poor communities, as victims, are forced into many complex problems outsider their making. It is therefore important to mainstream farmers’ perceptions and differences into policy strategies that consider both climate change and Anglophone conflict as national security concerns foe sustainable development in Cameroon.

Keywords: adaptation policies, climate change, conflict, small farmers, cameroon

Procedia PDF Downloads 155
591 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 250
590 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 53
589 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 104
588 Conflicts and Similarities among Energy Law, Environmental Law and Economic Aspects

Authors: Bahareh Arghand, Seyed Abbas Poorhashemi, Ramin Roshandel

Abstract:

Nowadays, Economic growth and the increasing use of fossil fuel have caused major damages to environment. Therefore, international law has tried to codify the rules and regulations and identify legal principles to decrease conflict of interests between energy law and environmental law. The open relationship between energy consumption and the law of nature has been ignored for years, because the focus of energy law has been on an affordable price of a reliable supply of energy; while the focus of environmental law was on protection of the nature. In fact, the legal and overall policies of energy are based on Sic Omnes and inter part for governments whereas environmental law is based on common interests and Erga Omnes. The relationship between energy law, environmental law and economic aspects is multilateral, complex and important. Moreover, they influence each other. There are similarities in the triangle of energy, environment and economic aspects and in some cases there are conflict of interest but their conflicts are in goals not in practice and their legal jurisdiction is in international law. The development of national and international rules and regulations relevant to energy-environment has been done by separate sectors, whereas sustainable development principle, especially in the economic sector, requires environmental considerations. It is an important turning point to integrate and decrease conflict of interest among energy law, environmental law and economic aspects. The present study examines existing legal principles on energy and the environment and identifies the similarities and conflicts based on the descriptive-analytic study. The purpose of investigating these legal principles is to integrate and decrease conflict of interest between energy law and environmental law.

Keywords: energy law, environmental law, erga omnes, sustainable development

Procedia PDF Downloads 381
587 Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time

Authors: T. R. Hidayat, G. Irawan, F. Kurniawan, E. H. I. Prasetya, Suharto, T. F. Ridwan, A. Pitoyo, A. Juniantoro, R. T. Hidayat

Abstract:

Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours.

Keywords: rubber swab, modifikasi swab, brush, fishing rubber swab, saving cost

Procedia PDF Downloads 166
586 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 256
585 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 311
584 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 124