Search results for: machine and plant engineering
6723 Machine That Provides Mineral Fertilizer Equal to the Soil on the Slopes
Authors: Huseyn Nuraddin Qurbanov
Abstract:
The reliable food supply of the population of the republic is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on the slopes, the application of equal amounts of mineral fertilizers the under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that, at present, there is a need to provide an equal amount of fertilizer on the slopes to under the soil, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize the under the soil, and unequal application of fertilizers under the soil on the slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, and taking into account the physical and mechanical properties of fertilizers is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the 8 partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.Keywords: combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer
Procedia PDF Downloads 1386722 Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants
Authors: Dace Grauda, Inta Belogrudova, Alexei Katashev, Linda Lancere, Isaak Rashal
Abstract:
The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control.Keywords: flow cytometry, fluorescence, SiO2 nanoparticles, UV irradiation
Procedia PDF Downloads 4136721 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 5736720 Evaluation of Genetic Potentials of Onion (Allium Cepa L.) Cultivars of North Western Nigeria
Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche
Abstract:
Onion (Allium cepa var. cepa L.) is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. North Western Nigeria (Sokoto, Kebbi and Zamfara States) constitute the major onion producing zone in Nigeria, which is primarily during the dry season. However, onion production in the zone is seriously affected by two main factors i.e. diseases and storage losses, in addition to other constraints that limits the cultivation of the crop during the rainy season which include lack of prolonged rainy season to allow for proper maturation of the crop. The major onion disease in this zone is purple blotch caused by a fungus Alternaria porri and currently efforts are on to develop onion hybrids resistant to the disease. Genetic diversity plays an important role in plant breeding either to exploit heterosis or to generate productive recombinants. Assessment of a large number of genotypes for a genetic diversity is the first step in this direction. The objective of this research therefore is to evaluate the genetic potentials of the onion cultivars of North Western Nigeria, with a view of developing new cultivars that address the major production challenges to onion cultivation in North Western, Nigeria. Thirteen onion cultivars were collected during an expedition covering North western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. The objective of the research was to determine the genetic potentials of onion cultivars of north western Nigeria as a basis for breeding purposes. Combined analysis of the results revealed highly significant variation between the cultivars across the locations with respect to plant height, number of leaves/plant, bolting %, bulb height, bulb weight, mean bulb yield and cured bulb weight, with significant variation in terms of bulb diameter. Tasa from Warra Local Government Area of Kebbi State (V4) recorded the greatest mean fresh bulb yield with Jar Albasa (V8) from Illela Local Government Area of Sokoto State recording the least. Similarly Marsa (V5) from Silame Local Government Area recorded the greatest mean cured bulb yield (marketable bulb)with Kiba (V11) from Goronyo Local Government of Sokoto State recording the least. Significant variation was recorded between the locations with respect to all characters, with Sokoto being better in terms of plant height, number of leaves/plant, bolting % and bulb diameter. Jega was better in terms of bulb height, bulb yield and cured bulb weight. Significant variation was therefore observed between the cultivars.Keywords: evaluation, genetic, onions, North Western Nigeria
Procedia PDF Downloads 4106719 Biomass and Biogas Yield of Maize as Affected by Nitrogen Rates with Varying Harvesting under Semi-Arid Condition of Pakistan
Authors: Athar Mahmood, Asad Ali
Abstract:
Management considerations including harvesting time and nitrogen application considerably influence the biomass yield, quality and biogas production. Therefore, a field study was conducted to determine the effect of various harvesting times and nitrogen rates on the biomass yield, quality and biogas yield of maize crop. This experiment was consisted of various harvesting times i.e., harvesting after 45, 55 and 65 days of sowing (DAS) and nitrogen rates i.e., 0, 100, 150 and 200 kg ha-1 respectively. The data indicated that maximum plant height, leaf area, dry matter (DM) yield, protein, acid detergent fiber, neutral detergent fiber, crude fiber contents and biogas yield were recorded 65 days after sowing while lowest was recorded 45 days after sowing. In contrary to that significantly higher chlorophyll contents were observed at 45 DAS. In case of nitrogen rates maximum plant height, leaf area, and DM yield, protein contents, ash contents, acid detergent fiber, neutral detergent fiber, crude fiber contents and chlorophyll contents were determined with nitrogen at the rate of 200 kg ha-1, while minimum was observed when no N was applied. Therefore, harvesting 65 DAS and N application @ 200 kg ha-1 can be suitable for getting the higher biomass and biogas production.Keywords: chemical composition, fiber contents, biogas, nitrogen, harvesting time
Procedia PDF Downloads 1606718 Microwave-Assisted Synthesis of Silver Nanoparticles from Dioscorea Deltoidea Callus Extract and Evaluation of Its Antimicrobial Activity
Authors: Mujeeb Mohd, Aqil Mohd, A. K. Najmi, Akhtar MMohd, Vasim Mohd
Abstract:
Dioscorea deltoidea belongs to the Dioscoreaceae family, is usually found in the north-western Himalayas and some other parts of the world up to an altitude of 1000–3000 m. D. deltoidea commonly known as yam and is an extensively used medicinal plant in the indigenous system of medicine. It has been reported to contain dioscine a steroidal glycoside in higher concentration. In the present investigation, silver nanoparticles (AgNPs) have been synthesized by a simple, efficient, environmentally benevolent and economic microwave-assisted method. Callus culture of D. deltoidea was developed and maintained on Murashige and skooge basal medium supplemented with different combination and concentration of plant growth regulators. Aqueous extract of callus culture was used as the reducing and stabilizing agent. The synthesized nanoparticles have been characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 430 nm in UV–Vis reveals the reduction of silver metal ions into silver nanoparticles. Whereas FTIR analysis was performed to probe the possible functional group involved in the synthesis of AgNPs. Further extract and AgNPs were evaluated for antimicrobial activity against different pathogenic microorganisms.Keywords: antimicrobial, Dioscorea deltoidea, microwave, silver, nanoparticles
Procedia PDF Downloads 2726717 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access
Authors: A. Asgharzadeh, M. Maroufi
Abstract:
5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband
Procedia PDF Downloads 1346716 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost
Authors: German Osma, Gabriel Ordonez
Abstract:
The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling
Procedia PDF Downloads 1706715 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing
Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta
Abstract:
Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay
Procedia PDF Downloads 546714 The Effect of Arbutin Powder and Arctostaphylos uvaursi Aqueous Leaf Extract on Synthesis of Melanin by Madurella mycetomatis
Authors: Amina Omer, Ikram Elsiddig
Abstract:
Arctostaphylos uvaursi is a plant of the family Ericaceae, it’s used in skin care products mostly for its depigmenting action, due to the presence of hydroquinones that are well known inhibitors of tyrosinase, an enzyme involved in melanin biosynthesis in humans. The main hydroquinone found within the A. uvaursi is arbutin, which is found with varying percentage within the plant depending on the season, and area from which the plant is harvested. An in vitro experiment has shown that the arbutin found within the bearberry leaf extract inhibited the biosynthesis of melanin in human melanoma cells and in three-dimensional human skin model. Madurella mycetomatis is filamentous fungus that causes the fungal form of mycetoma known as eumycetoma, with existing anti-fungals and surgery, only 35% of people living eumycetoma are treated, M. mycetomatis has been found to shield itself against the antifungal therapy through the production of melanin decreasing the effectiveness of the therapy, therefore there is a need for a new and more effective therapy. The aim of the study was to investigate and compare the effect of arbutin powder and aqueous extract of A. uvaursi containing arbutin on the biosynthesis of melanin by M. mycetomatis. The experiment was carried out by culturing M. mycetomatis on minimal media composed of 2% agar, 15 mM glucose, 10 mM MgSO4, 29.4 mM KH2PO4, 13 mM glycin and 80mg/l gentamicin, the media was supplied with different concentration of arbutin solution (5, 25 50,and 75mg) and aqueous extract of A. uvaursi to contain arbutin with concentrations (5, 25 50,and 75mg), the plates were incubated for two month and the result was observed by the naked eye. The results revealed that the arbutin powder had an inhibitory effect on melanin synthesis by M. mycetomatis that correlated with its established inhibitory effect on melanin synthesis in humans. The inhibitory effect of arbutin on melanin synthesis by M. mycetomatis was found to be dose dependent. A. uvaursi aqueous leaf extract containing arbutin was also found to decrease melanin production by M. mycetomatis, however plates containing high concentrations of aqueous extract couldn’t be assessed for its melanin inhibitory effect due to the high content of carbohydrates in the extract that promoted the growth of fungi Asperigullus niger rendering the plates unsuitable for visual inspection. In conclusion inhibition of melanin synthesis was observed on the arbutin powder as well as the aqueous extract containing arbutin. A. uvaursi is known to exhibit anti-inflammatory activity, which can aid in wound healing that is beneficial in the chronic inflammation caused by M. mycetomatis.Keywords: arbutin, arctostaphylos, Madurella, melanin
Procedia PDF Downloads 1706713 Oracle JDE Enterprise One ERP Implementation: A Case Study
Authors: Abhimanyu Pati, Krishna Kumar Veluri
Abstract:
The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning
Procedia PDF Downloads 2456712 Hazard Alert in Malaysia Related to Occupational Safety and Health
Authors: Atikah Binti Azudin, Nurin Nazlah Binti Muhamad Yani, Nur Alya Nadhirah Binti Naaidith, Nur Amylia Wahida Binti Mat Ayob, Nurshamimi Shakirah Binti Suboh, Nur Auni Batrisyia Binti Md. Zaini, Nur Aziemah Binti Mohamad, Nurul Suffiyah Binti Sa’Dun, Sabrina Sasha Izzati Binti Zubaile, Umi Huwaina Binti Ahmiruddin, Wan Nur Shafawati Binti Wan Ghazali
Abstract:
A hazard alert is intended to provide brief information about significant incidents or existing difficulties in Department workplaces. The alert gives guidelines for proper processes, practices, and controls to be applied. When operated in accordance with the manufacturer's instructions, any machine or tool utilized at work provides a safe and dependable platform for workers to accomplish job duties. However, when not utilized appropriately, the machine might pose a major hazard to employees. Employers have a duty to keep employees safe in this scenario. This Hazard Alert outlines specific occupational dangers and the controls that employers must apply to prevent injury or fatal accidents. There have been several cases of hazard alerts in Malaysia, which have had a negative impact on a few workers. Looking on the bright side, we can overcome every incident in a variety of ways. One of these is that only qualified individuals operate mobile machinery and equipment. In addition, employees may also perform frequent pre-use inspections of machinery to discover and fix flaws. Hazard alert is very important, and this study would cover a variety of subjects, including the methods employed.Keywords: safe, hazard, impacts, duties.
Procedia PDF Downloads 926711 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism
Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng
Abstract:
Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell
Procedia PDF Downloads 1546710 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant
Authors: John K. Avor, Choong-Koo Chang
Abstract:
The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability
Procedia PDF Downloads 1716709 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia
Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta
Abstract:
‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components
Procedia PDF Downloads 1906708 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2926707 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.Keywords: adaptive algorithm, fuzzy systems, membership functions, observer
Procedia PDF Downloads 2066706 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis
Procedia PDF Downloads 1626705 Monte Carlo Risk Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gases, power plants
Procedia PDF Downloads 4726704 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant
Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis
Abstract:
Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment
Procedia PDF Downloads 4846703 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2406702 Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity
Authors: Babak Azari, Afshin Pourahmad, Babak Sadeghi, Masuod Mokhtari
Abstract:
In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly.Keywords: nano, zeolit, potocatalist, nanocomposite
Procedia PDF Downloads 826701 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach
Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe
Abstract:
Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum
Procedia PDF Downloads 2286700 Evaluation of Anti-inflammatory Activities of Extracts Obtained from Capparis Erythrocarpos In-Vivo
Authors: Benedict Ofori, Kwabena Sarpong, Stephen Antwi
Abstract:
Background: Medicinal plants are utilized all around the world and are becoming increasingly important economically. The WHO notes that ‘inappropriate use of traditional medicines or practices can have negative or dangerous effects and that future research is needed to ascertain the efficacy and safety of such practices and medicinal plants used by traditional medicine systems. The poor around the world have limited access to palliative care or pain relief. Pharmacologists have been focused on developing safe and effective anti-inflammatory drugs. Most of the issues related to their use have been linked to the fact that numerous traditional and herbal treatments are classified in different nations as meals or dietary supplements. As a result, there is no need for evidence of the quality, efficacy, or safety of these herbal formulations before they are marketed. The fact that access to drugs meant for pain relief is limited in low-income countries means advanced studies should be done on home drugs meant for inflammation to close the gap. Methods: The ethanolic extracts of the plant were screened for the presence of 10 phytochemicals. The Pierce BCA Protein Assay Kit was used for the determination of the protein concentration of the egg white. The rats were randomly selected and put in 6 groups. The egg white was sub-plantar injected into the right-hand paws of the rats to induce inflammation. The animals were treated with the three plant extracts obtained from the root bark, stem, and leaves of the plant. The control groups were treated with normal saline, while the standard groups were treated with standard drugs indomethacin and celecoxib. Plethysmometer was used to measure the change in paw volume of the animals over the course of the experiment. Results: The results of the phytochemical screening revealed the presence of reducing sugars and saponins. Alkaloids were present in only R.L.S (1:1:1), and phytosterols were found in R.L(1:1) and R.L.S (1:1:1). The estimated protein concentration was found to be 103.75 mg/ml. The control group had an observable increase in paw volume, which indicated that inflammation was induced during the 5 hours. The increase in paw volume for the control group peaked at the 1st hour and decreased gradually throughout the experiment, with minimal changes in the paw volumes. The 2nd and 3rd groups were treated with 20 mg/kg of indomethacin and celecoxib. The anti-inflammatory activities of indomethacin and celecoxib were calculated to be 21.4% and 4.28%, respectively. The remaining 3 groups were treated with 2 dose levels of 200mg/kg plant extracts. R.L.S, R.L, and S.R.L had anti-inflammatory activities of 22.3%, 8.2%, and 12.07%, respectively. Conclusions: Egg albumin-induced paw model in rats can be used to evaluate the anti-inflammatory activity of herbs that might have potential anti-inflammatory activity. Herbal medications have potential anti-inflammatory activities and can be used to manage various inflammatory conditions if their efficacy and side effects are well studied. The three extracts all possessed anti-inflammatory activity, with R.L.S having the highest anti-inflammatory activity.Keywords: inflammation, capparis erythrocarpos, anti-inflammatory activity, herbal medicine, paw volume, egg albumin
Procedia PDF Downloads 896699 i2kit: A Tool for Immutable Infrastructure Deployments
Authors: Pablo Chico De Guzman, Cesar Sanchez
Abstract:
Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.Keywords: container, deployment, immutable infrastructure, microservice
Procedia PDF Downloads 1796698 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 566697 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities
Authors: Idil Kanter Otcu
Abstract:
Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.Keywords: energy efficiency, landscape design, plant design, xeriscape landscape
Procedia PDF Downloads 2616696 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 1096695 Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum
Authors: D. S. Mohale, A. V. Chandewar
Abstract:
Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.Keywords: anxiety, anxieolytic, social isolation, nerium indicum, kaner
Procedia PDF Downloads 3096694 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 81