Search results for: encrypted traffic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3378

Search results for: encrypted traffic classification

1068 Error Analysis of Students’ Freewriting: A Study of Adult English Learners’ Errors

Authors: Louella Nicole Gamao

Abstract:

Writing in English is accounted as a complex skill and process for foreign language learners who commit errors in writing are found as an inevitable part of language learners' writing. This study aims to explore and analyze the learners of English-as-a foreign Language (EFL) freewriting in a University in Taiwan by identifying the category of mistakes that often appear in their freewriting activity and analyzing the learners' awareness of each error. Hopefully, this present study will be able to gain further information about students' errors in their English writing that may contribute to further understanding of the benefits of freewriting activity that can be used for future purposes as a powerful tool in English writing courses for EFL classes. The present study adopted the framework of error analysis proposed by Dulay, Burt, and Krashen (1982), which consisted of a compilation of data, identification of errors, classification of error types, calculation of frequency of each error, and error interpretation. Survey questionnaires regarding students' awareness of errors were also analyzed and discussed. Using quantitative and qualitative approaches, this study provides a detailed description of the errors found in the students'freewriting output, explores the similarities and differences of the students' errors in both academic writing and freewriting, and lastly, analyzes the students' perception of their errors.

Keywords: error, EFL, freewriting, taiwan, english

Procedia PDF Downloads 111
1067 Vehicle Routing Problem Considering Alternative Roads under Triple Bottom Line Accounting

Authors: Onur Kaya, Ilknur Tukenmez

Abstract:

In this study, we consider vehicle routing problems on networks with alternative direct links between nodes, and we analyze a multi-objective problem considering the financial, environmental and social objectives in this context. In real life, there might exist several alternative direct roads between two nodes, and these roads might have differences in terms of their lengths and durations. For example, a road might be shorter than another but might require longer time due to traffic and speed limits. Similarly, some toll roads might be shorter or faster but require additional payment, leading to higher costs. We consider such alternative links in our problem and develop a mixed integer linear programming model that determines which alternative link to use between two nodes, in addition to determining the optimal routes for different vehicles, depending on the model objectives and constraints. We consider the minimum cost routing as the financial objective for the company, minimizing the CO2 emissions and gas usage as the environmental objectives, and optimizing the driver working conditions/working hours, and minimizing the risks of accidents as the social objectives. With these objective functions, we aim to determine which routes, and which alternative links should be used in addition to the speed choices on each link. We discuss the results of the developed vehicle routing models and compare their results depending on the system parameters.

Keywords: vehicle routing, alternative links between nodes, mixed integer linear programming, triple bottom line accounting

Procedia PDF Downloads 410
1066 The Effects of Logistical Centers Realization on Society and Economy

Authors: Anna Dolinayova, Juraj Camaj, Martin Loch

Abstract:

Presently it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight have been a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describe the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelling of total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Keywords: delivery time, economy effectiveness, logistical centers, ecological efficiency, optimization, society

Procedia PDF Downloads 446
1065 Combined Optical Coherence Microscopy and Spectrally Resolved Multiphoton Microscopy

Authors: Bjorn-Ole Meyer, Dominik Marti, Peter E. Andersen

Abstract:

A multimodal imaging system, combining spectrally resolved multiphoton microscopy (MPM) and optical coherence microscopy (OCM) is demonstrated. MPM and OCM are commonly integrated into multimodal imaging platforms to combine functional and morphological information. The MPM signals, such as two-photon fluorescence emission (TPFE) and signals created by second harmonic generation (SHG) are biomarkers which exhibit information on functional biological features such as the ratio of pyridine nucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) in the classification of cancerous tissue. While the spectrally resolved imaging allows for the study of biomarkers, using a spectrometer as a detector limits the imaging speed of the system significantly. To overcome those limitations, an OCM setup was added to the system, which allows for fast acquisition of structural information. Thus, after rapid imaging of larger specimens, navigation within the sample is possible. Subsequently, distinct features can be selected for further investigation using MPM. Additionally, by probing a different contrast, complementary information is obtained, and different biomarkers can be investigated. OCM images of tissue and cell samples are obtained, and distinctive features are evaluated using MPM to illustrate the benefits of the system.

Keywords: optical coherence microscopy, multiphoton microscopy, multimodal imaging, two-photon fluorescence emission

Procedia PDF Downloads 512
1064 Security Analysis of Mod. S Transponder Technology and Attack Examples

Authors: M. Rutkowski, J. Cwiklak, M. Grzegorzewski, M. Adamski

Abstract:

All class A Airplanes have to be equipped with Mod. S transponder for ATC surveillance purposes. This technology was designed to provide a robust and dependable solution to localize, identify and exchange data with the airplane. The purpose of this paper is to analyze potential hazards that are a result of lack of any security or encryption on a design level. Secondary Surveillance Radars rely on an active response from an airplane. SSR radar installation is broadcasting a directional interrogation signal to the planes in range on 1030MHz frequency with DPSK modulation. If the interrogation is correctly received by the transponder located on the plane, a proper answer is sent on 1090MHz with PPM modulation containing plane’s SQUAWK, barometric altitude, GPS coordinates and 24bit unique address code. This technology does not use any kind of encryption. All of the specifications from the previous chapter can be found easily on the internet. Since there is no encryption or security measure to ensure the credibility of the sender and message, it is highly hazardous to use such technology to ensure the safety of the air traffic. The only thing that identifies the airplane is the 24-bit unique address. Most of the planes have been sniffed by aviation enthusiasts and cataloged in web databases. In the moment of writing this article, The PoFung Technologies has announced that they are planning to release all band SDR transceiver – this device would be more than enough to build your own Mod. S Transponder. With fake transponder, a potential terrorist can identify as a different airplane. By replacing the transponder in a poorly controlled airspace, hijackers can enter another airspace identifying themselves as another plane and land in the desired area.

Keywords: flight safety, hijack, mod S transponder, security analysis

Procedia PDF Downloads 297
1063 A Study of Sources and Control of Environmental Noise Pollution on Selected Areas of Osogbo, Capital of Osun State, Nigeria

Authors: Abdulrazaq Adepoju

Abstract:

Climate change and its negative environmental challenges to humanity has for decades, taken the centre stage globally receiving attention on ways to take care of the menace and keep the damaging effects to manageable and tolerable level. However, noise pollution, another major environmental hazard militating against human habitation particularly in the developing countries of the world, is not receiving enough attention by the concerned authorities at all tiers of governance. A good knowledge of the major sources of environmental noise pollution will go a long way in assisting relevant stakeholders in planning, designing, and management of problems associated with noise pollution. This paper seeks to identify the major sources of noise in the built environment on selected areas of Osogbo, Nigeria. The paper adopted a survey research method of collecting data from surveys carried out on buildings around old Garage-Okefia axis, Old garage-Oja Oba axis, and Okefia-Olaiya junction axis, all within Osogbo metropolis using sound surveying metre. It was discovered that noise from vehicular and pedestrian traffic, commercial activities such as advertising vendors and religious buildings (churches and mosques) constitute major causes of noise in the study area. The paper recommends some measures to the affected stakeholders particularly government agencies on means of reducing noise pollution to a tolerable level in the study areas and places of the same industrial layout.

Keywords: built environment, climate change, environmental pollution, noise

Procedia PDF Downloads 365
1062 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil

Authors: T. S. Ijimdiya, K. J. Osinubi

Abstract:

This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.

Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts

Procedia PDF Downloads 438
1061 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 108
1060 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 141
1059 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone

Authors: Dedah Ahmed Babou, Nicolas Bez

Abstract:

The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.

Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris

Procedia PDF Downloads 149
1058 Evaluation of Cast-in-Situ Pile Condition Using Pile Integrity Test

Authors: Mohammad I. Hossain, Omar F. Hamim

Abstract:

This paper presents a case study on a pile integrity test for assessing the integrity of piles as well as a physical dimension (e.g., cross-sectional area, length), continuity, and consistency of the pile materials. The recent boom in the socio-economic condition of Bangladesh has given rise to the building of high-rise commercial and residential infrastructures. The advantage of the pile integrity test lies in the fact that it is possible to get an approximate indication regarding the quality of the sub-structure before commencing the construction of the super-structure. This paper aims at providing a classification of cast-in-situ piles based on characteristic reflectograms obtained using the Sonic Integrity Testing program for the sub-soil condition of Narayanganj, Bangladesh. The piles have been classified as 'Pile Type-1', 'Pile Type-2', 'Pile Type-3', 'Pile type-4', 'Pile Type-5' or 'Pile Type-6' from the visual observations of reflections from the generated stress waves by striking the pile head with a handheld hammer. With respect to construction quality and integrity, piles have been further classified into three distinct categories, i.e., satisfactory, may be satisfactory, and unsatisfactory.

Keywords: cast-in-situ piles, characteristic reflectograms, pile integrity test, sonic integrity testing program

Procedia PDF Downloads 121
1057 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 117
1056 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 338
1055 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan

Authors: Nijat S. İmamverdiyev

Abstract:

The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.

Keywords: renewable energy, solar energy, climate change, energy production

Procedia PDF Downloads 66
1054 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 597
1053 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 98
1052 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system

Procedia PDF Downloads 197
1051 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia

Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.

Abstract:

To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.

Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur

Procedia PDF Downloads 167
1050 Public Squares and Their Potential for Social Interactions: A Case Study of Historical Public Squares in Tehran

Authors: Asma Mehan

Abstract:

Under the thrust of technological changes, population growth and vehicular traffic, Iranian historical squares have lost their significance and they are no longer the main social nodes of the society. This research focuses on how historical public squares can inspire designers to enhance social interactions among citizens in Iranian urban context. Moreover, the recent master plan of Tehran demonstrates the lack of public spaces designed for the purpose of people’s social gatherings. For filling this gap, first the current situation of 7 selected primary historical public squares in Tehran including Sabze Meydan, Arg, Topkhaneh, Baherstan, Mokhber-al-dole, Rah Ahan and Hassan Abad have been compared. Later, the influencing elements on social interactions of the public squares such as subjective factors (human relationships and memories) and objective factors (natural and built environment) have been investigated. As a conclusion, some strategies are proposed for improving social interactions in historical public squares like; holding cultural, national, athletic and religious events, defining different and new functions in public squares’ surrounding, increasing pedestrian routs, reviving the collective memory, demonstrating the historical importance of square, eliminating visual obstacles across the square, organization the natural elements of the square, appropriate pavement for social activities. Finally, it is argued that the combination of all influencing factors which are: human interactions, natural elements and built environment criteria will lead to enhance the historical public squares’ potential for social interaction.

Keywords: historical square, Iranian public square, social interaction, Tehran

Procedia PDF Downloads 407
1049 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 163
1048 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 303
1047 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance

Authors: Pooja Kherudkar, Namdeo Hedaoo

Abstract:

There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.

Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement

Procedia PDF Downloads 200
1046 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem

Procedia PDF Downloads 168
1045 The Masterplan for the Urban Regeneration of the Heritage District of Msheireb Downtown Doha, State of Qatar

Authors: Raffaello Furlan

Abstract:

In the 21st century, the sustainable urban development of GCC-cities is challenged by inhabitants’ over-dependency on private-use vehicles. In turn, this habit has generated problems of urban inefficiency, contributing to traffic congestion, pollution, urban sprawling, fragmentation of the urban fabric, and various environmental and social challenges. In the context of Doha, the capital city of the State of Qatar, the over-dependency on private-use vehicles is justified by the lack of alternative public modes of transportation that support the need to connect fragmented urban districts and provide an effective solution to urban sprawl. Therefore, the current construction of the Qatar Metro Rail is offering the potential for investigating and defining a strategy for the sustainable urban development and/or urban regeneration of transit villages (TODs) in Qatar. Namely, the aim of this research study is (i) to investigate the development of transit villages (TODs) in the cultural-heritage district of Msheireb, Downtown Doha, (ii) to explore how the introduction of the new public transport system of Doha Metro can be effectively utilized as means of urban regeneration of the cultural core of the city, (iii) to propose a masterplan for TOD suitable for the district, suiting and responding to regional cultural and societal values. The findings reveal that the strategies for the sustainable urban regeneration of Msheireb are based on (i) the integration of land-use and multimodal transportation systems, (ii) the implementation of the public realm, and (iii) conservation of culture and urban identity.

Keywords: sustainable urbanism, smart growth, TODs, cultural district, Msheireb Downtown Doha

Procedia PDF Downloads 250
1044 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 386
1043 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure

Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed

Abstract:

Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.

Keywords: dynamic loading, finite element, geocell-reinforcement, GRP pipe, PLAXIS 3D, surface settlement

Procedia PDF Downloads 250
1042 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 292
1041 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 81
1040 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 498
1039 Fixed Point Iteration of a Damped and Unforced Duffing's Equation

Authors: Paschal A. Ochang, Emmanuel C. Oji

Abstract:

The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.

Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis

Procedia PDF Downloads 297