Search results for: battery grading algorithm
2036 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project
Authors: Kamyar Moradi
Abstract:
Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.Keywords: brain MRI, cannabis, memory, recreational use, THC urine test
Procedia PDF Downloads 1962035 Ant System with Acoustic Communication
Authors: Saad Bougrine, Salma Ouchraa, Belaid Ahiod, Abdelhakim Ameur El Imrani
Abstract:
Ant colony optimization is an ant algorithm framework that took inspiration from foraging behaviour of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.Keywords: acoustic communication, ant colony optimization, local search, traveling salesman problem
Procedia PDF Downloads 5862034 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas
Abstract:
The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm
Procedia PDF Downloads 952033 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 692032 Risk Tolerance in Youth With Emerging Mood Disorders
Authors: Ange Weinrabe, James Tran, Ian B. Hickie
Abstract:
Risk-taking behaviour is common during youth. In the time between adolescence and early adulthood, young people (aged 15-25 years) are more vulnerable to mood disorders, such as anxiety and depression. What impact does an emerging mood disorder have on decision-making in youth at critical decision points in their lives? In this article, we explore the impact of risk and ambiguity on youth decision-making in a clinical setting using a well-known economic experiment. At two time points, separated by six to eight weeks, we measured risky and ambiguous choices concurrently with findings from three psychological questionnaires, the 10-item Kessler Psychological Distress Scale (K10), the 17-item Quick Inventory of Depressive Symptomatology Adolescent Version (QIDS-A17), and the 12-item Somatic and Psychological Health Report (SPHERE-12), for young help seekers aged 16-25 (n=30, mean age 19.22 years, 19 males). When first arriving for care, we found that 50% (n=15) of participants experienced severe anxiety (K10 ≥ 30) and were severely depressed (QIDS-A17 ≥ 16). In Session 2, taking attrition rates into account (n=5), we found that 44% (n=11) remained severe across the full battery of questionnaires. When applying multiple regression analyses of the pooled sample of observations (N=55), across both sessions, we found that participants who rated severely anxious avoided making risky decisions. We suggest there is some statistically significant (although weak) (p=0.09) relation between risk and severe anxiety scores as measured by K10. Our findings may support working with novel tools with which to evaluate youth experiencing an emerging mood disorder and their cognitive capacities influencing decision-making.Keywords: anxiety, decision-making, risk, adolescence
Procedia PDF Downloads 1162031 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 182030 Egg Yolk and Serum Cholesterol Reducing Effect of Garlic and Natural Cocoa Powder Using Laying Birds as Model
Authors: Onyimonyi Anselm Ego, Obi-Keguna Christy, Dim Emmanuel Chinonso, Ugwuanyi Evelyn, Uzochukwu Ifeanyi Emmanuel
Abstract:
A total of 144 Shaver Brown Layers in their sixteenth week of lay were used in a twelve weeks study to evaluate the egg yolk and serum cholesterol of the birds when fed varying dietary combinations of garlic and natural cocoa powder. The birds were randomly assigned into nine dietary treatments with 16 birds per treatment. Each bird was housed separately in a cage measuring 45 cm x 35 cm in an open sided battery cage house typical of the tropics. A standard poultry mash diet with 16.5% CP and 2800 KcalME/kg was formulated as the basal ration which also served as the control diet. Garlic and natural cocoa powder were incorporated in varying combinations (50 g or 100 g/100 kg of feed) in the remaining eight treatments. Weekly data of egg weight, egg length, egg diameter, yolk weight, albumen weight and hen day egg production were kept. Egg yolk and serum cholesterol levels were determined using a Randox kit. Results showed that birds receiving garlic and natural cocoa powder had significantly (P<0.05) reduced egg and albumen weight as compared to control birds. Hen day production of the birds was also significantly higher than control birds. Egg yolk and serum cholesterol of birds receiving the garlic and natural cocoa powder were significantly (P<0.05) lower than the control. Serum cholesterol levels showed decline in the birds receiving garlic and natural cocoa powder. The least yolk cholesterol level of 160 mg/dl was observed in birds receiving 50g garlic and 50 g natural cocoa powder (Treatment 5). Control birds had an egg cholesterol level of 245.45 mg/dl. It was concluded that incorporating garlic and natural cocoa powder in the diets of laying hens can result in a significant reduction in the egg and serum cholesterol levels.Keywords: egg, serum, cholesterol, garlic
Procedia PDF Downloads 7672029 A CORDIC Based Design Technique for Efficient Computation of DCT
Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder
Abstract:
A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.Keywords: DCT, DFT, CORDIC, FFT
Procedia PDF Downloads 4782028 Rapid Algorithm for GPS Signal Acquisition
Authors: Fabricio Costa Silva, Samuel Xavier de Souza
Abstract:
A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.Keywords: GPS, acquisition, complexity, parallelism
Procedia PDF Downloads 5382027 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode
Procedia PDF Downloads 662026 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes
Authors: Chih-Jer Lin, Jian-Hong Hou
Abstract:
Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance
Procedia PDF Downloads 1462025 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 1472024 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India
Authors: Priyanka Mazumdar, Ananya Mukhopadhyay
Abstract:
A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence
Procedia PDF Downloads 2692023 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices
Procedia PDF Downloads 4062022 Rapid Parallel Algorithm for GPS Signal Acquisition
Authors: Fabricio Costa Silva, Samuel Xavier de Souza
Abstract:
A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information's are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.Keywords: GPS, acquisition, low complexity, parallelism
Procedia PDF Downloads 5012021 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3582020 Using Repetition of Instructions in Course Design to Improve Instructor Efficiency and Increase Enrollment in a Large Online Course
Authors: David M. Gilstrap
Abstract:
Designing effective instructions is a critical dimension of effective teaching systems. Due to a void in interpersonal contact, online courses present new challenges in this regard, especially with large class sizes. This presentation is a case study in how the repetition of instructions within the course design was utilized to increase instructor efficiency in managing a rapid rise in enrollment. World of Turf is a two-credit, semester-long elective course for non-turfgrass majors at Michigan State University. It is taught entirely online and solely by the instructor without any graduate teaching assistants. Discussion forums about subject matter are designated for each lecture, and those forums are moderated by a few undergraduate turfgrass majors. The instructions as to the course structure, navigation, and grading are conveyed in the syllabus and course-introduction lecture. Regardless, students email questions about such matters, and the number of emails increased as course enrollment grew steadily during the first three years of its existence, almost to a point that the course was becoming unmanageable. Many of these emails occurred because the instructor was failing to update and operate the course in a timely and proper fashion because he was too busy answering emails. Some of the emails did help the instructor ferret out poorly composed instructions, which he corrected. Beginning in the summer semester of 2015, the instructor overhauled the course by segregating content into weekly modules. The philosophy envisioned and embraced was that there can never be too much repetition of instructions in an online course. Instructions were duplicated within each of these modules as well as associated modules for syllabus and schedules, getting started, frequently asked questions, practice tests, surveys, and exams. In addition, informational forums were created and set aside for questions about the course workings and each of the three exams, thus creating even more repetition. Within these informational forums, students typically answer each other’s questions, which demonstrated to the students that that information is available in the course. When needed, the instructor interjects with corrects answers or clarifies any misinformation which students might be putting forth. Increasing the amount of repetition of instructions and strategic enhancements to the course design have resulted in a dramatic decrease in the number of email replies necessitated by the instructor. The resulting improvement in efficiency allowed the instructor to raise enrollment limits thus effecting a ten-fold increase in enrollment over a five-year period with 1050 students registered during the most recent academic year, thus becoming easily the largest online course at the university. Because of the improvement in course-delivery efficiency, sufficient time was created that allowed the instructor to development and launch an additional online course, hence further enhancing his productivity and value in terms of the number of the student-credit hours for which he is responsible.Keywords: design, efficiency, instructions, online, repetition
Procedia PDF Downloads 2092019 Maximum Power Point Tracking Using FLC Tuned with GA
Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli
Abstract:
The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking
Procedia PDF Downloads 3732018 Optical Flow Technique for Supersonic Jet Measurements
Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi
Abstract:
This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.Keywords: Schlieren, optical flow, supersonic jets, shock shear layer
Procedia PDF Downloads 3122017 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm
Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam
Abstract:
The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction
Procedia PDF Downloads 1392016 DHL CSI Solution Design Project
Authors: Mohammed Al-Yamani, Yaser Miaji
Abstract:
DHL Customer Solutions and Innovation Department (CSI) have been experiencing difficulties while comparing quotes for different customers in different years. Currently, the employees are processing data by opening several loaded Excel files where the quotes are and manually copying values to another Excel Workbook where the comparison is made. This project consists of developing a new and effective database for DHL CSI department so that information is stored altogether on the same catalog. That being said, we have been assigned to find an efficient algorithm that can deal with the different formats of the Excel Workbooks to copy and store the express customer rates for core products (DOX, WPX, IMP) for comparisons purposes.Keywords: DHL, solution design, ORACLE, EXCEL
Procedia PDF Downloads 4102015 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory
Authors: Kiana Zeighami, Morteza Ozlati Moghadam
Abstract:
Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping
Procedia PDF Downloads 2082014 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training
Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li
Abstract:
Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning
Procedia PDF Downloads 2612013 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4292012 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 1282011 Single Ion Conductors for Lithium-Ion Battery Application
Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt
Abstract:
Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte
Procedia PDF Downloads 1672010 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles
Authors: Aaron Liggett
Abstract:
This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.Keywords: landscape architecture, ecological urban design, greenway, landscape performance
Procedia PDF Downloads 1302009 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 752008 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 1132007 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.Keywords: canny pruning, hand recognition, machine learning, skin tracking
Procedia PDF Downloads 185