Search results for: Chandan Deep Singh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3188

Search results for: Chandan Deep Singh

878 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 454
877 Juvenile Justice System in India: Pre and Post Nirbhaya Case

Authors: Vaibhav Singh Parihar

Abstract:

Incidents of serious offenses being committed by children are increasing day by day thereby becoming a matter of great concern. The involvement of a 17-year-old boy in the incident that took place on 16th December 2012 (most commonly known as ‘Nirbhaya Case’)wherein a 23-year-old girl was brutally gang-raped and thrown out of the moving bus, took the entire nation by shock. Previously, the legislation dealing with juvenile delinquency in India considered a child to be juvenile if he/she was below the age of 18 years. As a consequence, the accused who was just six months short of attaining the age of 18 years was convicted for only three years. The primary objective of the study is to understand the gravity as to why the need for distinguishing a child and juvenile arose in this time and to what extent legislations are successful in this regard. It initially explains the history and evolution of juvenile legislation in India and the provisions contained in the Indian Constitution. It then goes on to explain the causes of juvenile delinquency in India. Further, the study focuses on the latest trends that have developed in juvenile delinquency, explaining how the Nirbhaya Case led to the amendments made to the Juvenile Justice Act, 2010. Also, it focuses on the Child Rights and Child Protection and the stand taken by the National Human Rights Commission and the international community. An attempt has been made to settle the debate as to whether the juvenile justice system in India is reformative or punitive. The need for amendment in the Juvenile Justice Act is also highlighted. The outcome of the study suggests that the legislation relating to juvenile delinquency have not been able to achieve the desired results. The age determination method in our system has been given paramount importance. The maximum punishment prescribed, even for heinous crimes, is only three years. Also, the reformative style of punishment is not adequate and more emphasis should be laid on penalization. Finally, the author concludes that the legislation has failed at creating a deterrent effect. It is suggested to strengthen the role of government authorities and to sensitize people in this regard to increase community participation. A non-doctrinal and analytical approach has been adopted and secondary sources of data have been relied upon by the author for conducting the research for the study.

Keywords: child, delinquency, juvenile, Nirbhaya case

Procedia PDF Downloads 183
876 Fatty Acid Composition of Muscle Lipids of Cyprinus carpio L. Living in Different Dam Lake, Turkey

Authors: O. B. Citil, V. Sariyel, M. Akoz

Abstract:

In this study, total fatty acid composition of muscle lipids of Cyprinus carpio L. living in Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake were determined using GC. During this study, for the summer season of July was taken from each region of the land and they were stored in deep-freeze set to -20 degrees until the analysis date. At the end of the analyses, 30 different fatty acids were found in the composition of Cyprinus carpio L. which lives in different lakes. Cyprinus carpio Suğla Dam Lake of polyunsaturated fatty acids (PUFAs), were higher than other lakes. Cyprinus carpio L. was the highest in the major SFA palmitic acid. Polyunsaturated fatty acids (PUFA) of carp, the most abundant fish species in all lakes, were found to be higher than those of saturated fatty acids (SFA) in all lakes. Palmitic acid was the major SFA in all lakes. Oleic acid was identified as the major MUFA. Docosahexaenoic acid (DHA) was the most abundant in all lakes. ω3 fatty acid composition was higher than the percentage of the percentage ω6 fatty acids in all lake. ω3/ω6 rates of Cyprinus carpio L. Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake, 2.12, 1.19, 2.15, 2.87, and 2.82, respectively. Docosahexaenoic acid (DHA) was the major PUFA in Eğirdir and Burdur lakes, whereas linoleic acid (LA) was the major PUFA in Altinapa and Suğla Dam Lakes. It was shown that the fatty acid composition in the muscle of carp was significantly influenced by different lakes.

Keywords: Cyprinus carpio L., fatty acid, composition, gas chromatography

Procedia PDF Downloads 570
875 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm

Authors: Ebert Brea

Abstract:

We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.

Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain

Procedia PDF Downloads 470
874 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
873 Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera

Authors: Fadlan Atmaja Nursiwan, Ugi Kurnia Gusti

Abstract:

Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE.

Keywords: granite, mesozoic, radiolarian, subduction traces

Procedia PDF Downloads 337
872 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps

Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur

Abstract:

The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.

Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion

Procedia PDF Downloads 117
871 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
870 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
869 Hanna Arendt and Al-Farabi’s Non-Naturalistic Political Philosophy

Authors: Mohammad Hossein Badamchi

Abstract:

As Leo Strauss demonstrates in his works, Political Philosophy in the western tradition is an epistemic-naturalistic tradition insofar Hanna Arendt mentioning the deep conflict between philosophy and politics, opposed to be named “political philosopher” prefer the title “political thinker” for herself. In fact, the Western political philosophy’s tendency to derive politics from natural law and epistemic argumentations makes a paradox between the actual “the political” and the theoretical “natural politics” in the western tradition. In this paper, we want to show that Hanna Arendt, in her exploration to find a new realm of the non-naturalistic way of thinking about the political is walking on a completely different tradition of political philosophy which was first established by Al-Farabi, the founder of Islamic political philosophy around thousand years after Greek Philosophy. Despite Aristotelian Polis which is a Natural community based on true natural rationality to reach the natural purposes of mankind, Al-Farabi’s Madine (his reconstructed concept of Aristotelian Polis) is completely constructed against natural cities, which are formulated by necessity logic of natural arguments and natural deception of humanity. In fact, Farabi considers the natural understanding of politics as Ignorant ideologies used by governments to suppress people. Madine in Farabi’s work is not a natural institution but is a collaborative constitution founded by citizens. So despite Aristotelian thinking, here we don’t have just A Polis that is the one true polis, but we have various multiple Madines among one, is virtuous not by definition but by real action of citizens and civil relations. Al-Farabi’s political philosophy is not a Naturalistic-epistemic Political Philosophy but is a Phronetic Political Philosophy which Hanna Arendt wants to establish outside of western contemplative anti-active political philosophy tradition.

Keywords: al-farabi, hanna arendt, natural politics, the political, political philosophy

Procedia PDF Downloads 295
868 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma

Abstract:

Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 207
867 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 278
866 An Introduction to the Current Epistemology of Ethical Philosophy of Islamic Banking

Authors: Mohd Iqbal Malik

Abstract:

Ethical philosophy of Quran pinnacled virtue and economics as the part and parcel of human life. Human beings are to be imagined by the sign of morals. Soul and morality are both among the essences of human personality. Islam lays the foundation of ethics by installation of making a momentous variance between virtue and vice. It suggests for the distribution of wealth in-order to terminate accumulation of economic resources. Quran claims for the ambiguous pavement to attain virtue by saying, ‘Never will you attain the good (reward) until you spend (in the way of Allah) from that which you love. And whatever you spend indeed, Allah knows of it.’ The essence of Quran is to eliminate all the deep-seated approaches through which the wealth of nations is being accumulated within few hands. The paper will study the Quranic Philosophy Of Islamic Economic System. In recent times, to get out of the human resource development mystery of Muslims, Ismail Al-Raji Faruqi led the way in the so-called ‘Islamization’ of knowledge. Rahman and Faruqi formed opposite opinions on this project. Al-Faruqi thought of the Islamization of knowledge in terms of introducing Western learning into received Islamic values and vice versa. This proved to be a mere peripheral treatment of Islamic values in relation to Western knowledge. It is true that out of the programme of Islamization of knowledge arose Islamic universities in many Muslim countries. Yet the academic programmes of these universities were not founded upon a substantive understanding and application of the tawhidi epistemology.

Keywords: ethical philosophy, modern Islamic finance, knowledge of finance, Islamic banking

Procedia PDF Downloads 305
865 Role of Cognitive Flexibility and Employee Engagement in Determining Turnover Intentions of Employees

Authors: Prashant Das, Tushar Singh, Virendra Byadwal

Abstract:

The present study attempted to understand the role of cognitive flexibility and employee engagement in predicting employees’ turnover intentions. Employee turnover is a significant problem that many organizations are facing these days. Employee turnover is not only extremely expensive for the employer but also results in poor production levels. In developing countries like India, organizations once believed to have most stable employees, are facing major turnover problems. One such organization is banking organizations. Due to globalization, banks are now changing their work scenarios under which the employees have many different roles to perform. Cognitive flexibility which refers to an individual’s ability to shift cognitive sets and to adapt to one’s changing environment, thus seems to be an important factor that are responsible for the employee turnover in organizations. It is hypothesized that those with higher cognitive flexibility would be more able to adapt to the changing work demands of the organizations and thus would show less turnover intentions. Another factor that seems to be important in predicting turnover is employee engagement. Kahn referred to engagement in terms of the harnessing of organization members’ selves to their work roles [by which they] employ and express themselves physically, cognitively, and emotionally during role performances. Studies have shown a strong relationship between employee engagement and turnover intentions. Those with higher engagement with their jobs have found to show low turnover intentions. This study thus hypothesizes that employees with higher engagement will show lower levels of turnover intentions. A total of 150 bank employees (75 from private and 75 from public) participated in this study. They were administered Cognitive Flexibility Scale, Gallup Questionnaire and Intention to Stay Questionnaire along with another questionnaire asking for their demographic details. Results of the study revealed that employees with higher levels of cognitive flexibility and employee engagement show lover levels of turnover intentions. However, the effect is more prominent in case of employees of private banks. Demographic characteristics such as level of the employee and years of engagement in the current job have also been found to be influencing the relationship between cognitive flexibility, employee engagement and turnover intentions. Results of the study are interpreted in accordance to the prevalent literature and theoretical positions.

Keywords: cognitive flexibility, employee engagement, organization, turnover intentions

Procedia PDF Downloads 423
864 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 81
863 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: nanoparticles, seed germination, seed soaking, wheat

Procedia PDF Downloads 227
862 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
861 Predicting the Next Offensive Play Types will be Implemented to Maximize the Defense’s Chances of Success in the National Football League

Authors: Chris Schoborg, Morgan C. Wang

Abstract:

In the realm of the National Football League (NFL), substantial dedication of time and effort is invested by both players and coaches in meticulously analyzing the game footage of their opponents. The primary aim is to anticipate the actions of the opposing team. Defensive players and coaches are especially focused on deciphering their adversaries' intentions to effectively counter their strategies. Acquiring insights into the specific play type and its intended direction on the field would confer a significant competitive advantage. This study establishes pre-snap information as the cornerstone for predicting both the play type (e.g., deep pass, short pass, or run) and its spatial trajectory (right, left, or center). The dataset for this research spans the regular NFL season data for all 32 teams from 2013 to 2022. This dataset is acquired using the nflreadr package, which conveniently extracts play-by-play data from NFL games and imports it into the R environment as structured datasets. In this study, we employ a recently developed machine learning algorithm, XGBoost. The final predictive model achieves an impressive lift of 2.61. This signifies that the presented model is 2.61 times more effective than random guessing—a significant improvement. Such a model has the potential to markedly enhance defensive coaches' ability to formulate game plans and adequately prepare their players, thus mitigating the opposing offense's yardage and point gains.

Keywords: lift, NFL, sports analytics, XGBoost

Procedia PDF Downloads 56
860 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 429
859 Exploring the Prebiotic Potential of Glucosamine

Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh

Abstract:

Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.

Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid

Procedia PDF Downloads 331
858 Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles

Authors: Sanjay Singh, Karunanithi Priyanka, Ramoji Kosuru, Raju Prasad Sharma

Abstract:

Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy.

Keywords: Ficus religiosa, phytosterolins, bioavailability, solid lipid nanoparticles, stigmasterol and β-sitosteryl-d-glucoside

Procedia PDF Downloads 473
857 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 93
856 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review

Authors: Andrei Nosov

Abstract:

This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.

Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation

Procedia PDF Downloads 63
855 Evaluation of Traumatic Spine by Magnetic Resonance Imaging

Authors: Sarita Magu, Deepak Singh

Abstract:

Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.

Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading

Procedia PDF Downloads 355
854 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 151
853 Approaching In vivo Dosimetry for Kilovoltage X-Ray Radiotherapy

Authors: Rodolfo Alfonso, David Alonso, Albin Garcia, Jose Luis Alonso

Abstract:

Recently a new kilovoltage radiotherapy unit model Xstrahl 200 - donated to the INOR´s Department of Radiotherapy (DR-INOR) in the framework of a IAEA's technical cooperation project- has been commissioned. This unit is able to treat shallow and low deep laying lesions, as it provides 8 discrete beam qualities, from 40 to 200 kV. As part of the patient-specific quality assurance program established at DR-INOR for external beam radiotherapy, it has been recommended to implement in vivo dose measurements (IVD), as they allow effectively discovering eventual errors or failures in the radiotherapy process. For that purpose a radio-photoluminescence (RPL) dosimetry system, model XXX, -also donated to DR-INOR by the same IAEA project- has been studied and commissioned. Main dosimetric parameters of the RPL system, such as reproducibility, linearity, and filed size influence were assessed. In a similar way, the response of radiochromic EBT3 type film was investigated for purposes of IVD. Both systems were calibrated in terms of entrance surface dose. Results of the dosimetric commissioning of RPL and EBT3 for IVD, and their pre-clinical implementation through end-to-end test cases are presented. The RPL dosimetry seems more recommendable for hyper-fractionated schemes with larger fields and curved patient contours, as those in chest wall irradiations, where the use of more than one dosimeter could be required. The radiochromic system involves smaller corrections with field size, but it sensibility is lower; hence it is more adequate for hypo-fractionated treatments with smaller fields.

Keywords: glass dosimetry, in vivo dosimetry, kilovotage radiotherapy, radiochromic dosimetry

Procedia PDF Downloads 398
852 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 143
851 Development of a Standardization Methodology Assessing the Comfort Performance for Hanok

Authors: Mi-Hyang Lee, Seung-Hoon Han

Abstract:

Korean traditional residences have been built with deep design issues for various values such as social, cultural, and environmental influences to be started from a few thousand years ago, but its meaning is being vanished due to the different lifestyles these days. It is necessary, therefore, to grasp the meaning of the Korea traditional building called Hanok and to get Korean people understand its real advantages. The purpose of this study is to propose a standardization methodology for evaluating comfort features towards Korean traditional houses. This paper is also trying to build an official standard evaluation system and to integrate aesthetic and psychological values induced from Hanok. Its comfort performance values could be divided into two large categories that are physical and psychological, and fourteen methods have been defined as the Korean Standards (KS). For this research, field survey data from representative Hanok types were collected for each method. This study also contains a qualitative in-depth analysis of the Hanok comfort index by the professions using AHP (Analytical Hierarchy Process) and has examined the effect of the methods. As a result, this paper could define what methods can provide trustful outcomes and how to evaluate the own strengths in aspects of spatial comfort of Hanok using suggested procedures towards the spatial configuration of the traditional dwellings. This study has finally proposed an integrated development of a standardization methodology assessing the comfort performance for Korean traditional residences, and it is expected that they could evaluate inhabitants of the residents and interior environmental conditions especially structured by wood materials like Hanok.

Keywords: Hanok, comfort performance, human condition, analytical hierarchy process

Procedia PDF Downloads 157
850 Modelling Interactions between Saturated and Unsaturated Zones by Hydrus 1D, Plain of Kairouan, Central Tunisia

Authors: Mariem Saadi, Sabri Kanzari, Adel Zghibi

Abstract:

In semi-arid areas like the Kairouan region, the constant irrigation with saline water and the overuse of groundwater resources, soils and aquifers salinization has become an increasing concern. In this study, a methodology has been developed to evaluate the groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998-2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer in the unsaturated zone. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.

Keywords: Hydrus-1D, Kairouan, salinization, semi-arid region, solute transport, unsaturated zone

Procedia PDF Downloads 183
849 Prioritization Ranking for Managing Moisture Problems in a Building

Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri

Abstract:

Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.

Keywords: water leakage, survey, causes, matrices, prioritization

Procedia PDF Downloads 98