Search results for: small cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7621

Search results for: small cells

5341 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si

Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff

Abstract:

Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.

Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples

Procedia PDF Downloads 298
5340 Early Biological Effects in Schoolchildren Living in an Area of Salento (Italy) with High Incidence of Chronic Respiratory Diseases: The IMP.AIR. Study

Authors: Alessandra Panico, Francesco Bagordo, Tiziana Grassi, Adele Idolo, Marcello Guido, Francesca Serio, Mattia De Giorgi, Antonella De Donno

Abstract:

In the Province of Lecce (Southeastern Italy) an area with unusual high incidence of chronic respiratory diseases, including lung cancer, was recently identified. The causes of this health emergency are still not entirely clear. In order to determine the risk profile of children living in five municipalities included in this area an epidemiological-molecular study was performed in the years 2014-2016: the IMP.AIR. (Impact of air quality on health of residents in the Municipalities of Sternatia, Galatina, Cutrofiano, Sogliano Cavour and Soleto) study. 122 children aged 6-8 years attending primary school in the study area were enrolled to evaluate the frequency of micronuclei (MNs) in their buccal exfoliated cells. The samples were collected in May 2015 by rubbing the oral mucosa with a soft bristle disposable toothbrush. At the same time, a validated questionnaire was administered to parents to obtain information about health, lifestyle and eating habits of the children. In addition, information on airborne pollutants, routinely detected by the Regional Environmental Agency (ARPA Puglia) in the study area, was acquired. A multivariate analysis was performed to detect any significant association between frequency of MNs (dependent variable) and behavioral factors (independent variables). The presence of MNs was highlighted in the buccal exfoliated cells of about 42% of recruited children with a mean frequency of 0.49 MN/1000 cells, greater than in other areas of Salento. The survey on individual characteristics and lifestyles showed that one in three children was overweight and that most of them had unhealthy eating habits with frequent consumption of foods considered ‘risky’. Moreover many parents (40% of fathers and 12% of mothers) were smokers and about 20% of them admitted to smoking in the house where the children lived. Information regarding atmospheric contaminants was poor. Of the few substances routinely detected by the only one monitoring station located in the study area (PM2.5, SO2, NO2, CO, O3) only ozone showed high concentrations exceeding the limits set by the legislation for 67 times in the year 2015. The study showed that the level of early biological effect markers in children was not negligible. This critical condition could be related to some individual factors and lifestyles such as overweight, unhealthy eating habits and exposure to passive smoking. At present, no relationship with airborne pollutants can be established due to the lack of information on many substances. Therefore, it would be advisable to modify incorrect behaviors and to intensify the monitoring of airborne pollutants (e.g. including detection of PM10, heavy metals, aromatic polycyclic hydrocarbons, benzene) given the epidemiology of chronic respiratory diseases registered in this area.

Keywords: chronic respiratory diseases, environmental pollution, lifestyle, micronuclei

Procedia PDF Downloads 187
5339 TiO₂ Nanoparticles Induce DNA Damage and Expression of Biomarker of Oxidative Stress on Human Spermatozoa

Authors: Elena Maria Scalisi

Abstract:

The increasing production and the use of TiO₂ nanoparticles (NPs) have inevitably led to their release into the environment, thereby posing a threat to organisms and also for human. Human exposure to TiO₂-NPs may occur during both manufacturing and use. TiO₂-NPs are common in consumer products for dermal application, toothpaste, food colorants, and nutritional supplements, then oral exposure may occur during use of such products. Into the body, TiO₂-NPs thanks to their small size (<100 nm), can, through testicular blood barrier inducing effect on testis and then on male reproductive health. The nanoscale size of TiO₂ increase the surface-to-volume ratio making them more reactive in a cell, then TiO₂ NPs increase their ability to produce reactive oxygen species (ROS). In male germ cells, ROS may have important implications in maintaining the normal functions of mature spermatozoa at physiological levels, moreover, in spermatozoa they are important signaling molecules for their hyperactivation and acrosome reaction. Nevertheless, an excess of ROS by external inputs such as NPs can increased the oxidative stress (OS), which results in damage DNA and apoptosis. The aim of our study has been investigate the impact of TiO₂ NPs on human spermatozoa, evaluating DNA damage and the expression of proteins involved in cell stress. According WHO guidelines 2021, we have exposed human spermatozoa in vitro to TiO₂ NP at concentrations 50 ppm, 100 ppm, 250 ppm, and 500 ppm for 1 hour (at 37°C and CO₂ at 5%). DNA damage was evaluated by Sperm Chromatin Dispersion Test (SCD) and TUNEL assay; moreover, we have evaluated the expression of biomarkers of oxidative stress like Heat Shock Protein 70 (HSP70) and Metallothioneins (MTs). Also, sperm parameters as motility viability have been evaluated. Our results not report a significant reduction in motility of spermatozoa at the end of the exposure. On the contrary, the progressive motility was increased at the highest concentration (500 ppm) and was statistically significant compared to control (p <0.05). Also, viability was not changed by exposure to TiO₂-NPs (p <0.05). However, increased DNA damage was observed at all concentrations, and the TUNEL assay highlighted the presence of single strand breaks in the DNA. The spermatozoa responded to the presence of TiO₂-NPs with the expression of Hsp70, which have a protective function because they allow the maintenance of cellular homeostasis in stressful/ lethal conditions. A positivity for MTs was observed mainly for the concentration of 4 mg/L. Although the biological and physiological function of the metallothionein (MTs) in the male genital organs is unclear, our results highlighted that the MTs expressed by spermatozoa maintain their biological role of detoxification from metals. Our results can give additional information to the data in the literature on the toxicity of TiO₂-NPs and reproduction.

Keywords: human spermatozoa, DNA damage, TiO₂-NPs, biomarkers

Procedia PDF Downloads 131
5338 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 123
5337 Evaluation of the Benefit of Anti-Endomysial IgA and Anti-Tissue Transglutaminase IgA Antibodies for the Diagnosis of Coeliac Disease in a University Hospital, 2010-2016

Authors: Recep Keşli, Onur Türkyılmaz, Hayriye Tokay, Kasım Demir

Abstract:

Objective: Coeliac disease (CD) is a primary small intestine disorder caused by high sensitivity to gluten which is present in the crops, characterized by inflammation in the small intestine mucosa. The goal of this study was to determine and to compare the sensitivity and specificity values of anti-endomysial IgA (EMA IgA) (IFA) and anti-tissue transglutaminase IgA (anti-tTG IgA) (ELISA) antibodies in the diagnosis of patients suspected with the CD. Methods: One thousand two hundred seventy three patients, who have applied to gastroenterology and pediatric disease polyclinics of Afyon Kocatepe University ANS Research and Practice Hospital were included into the study between 23.09.2010 and 30.05.2016. Sera samples were investigated by immunofluorescence method for EMA positiveness (Euroimmun, Luebeck, Germany). In order to determine quantitative value of Anti-tTG IgA (EIA) (Orgentec Mainz, Germany) fully automated ELISA device (Alisei, Seac, Firenze, Italy) were used. Results: Out of 1273 patients, 160 were diagnosed with coeliac disease according to ESPGHAN 2012 diagnosis criteria. Out of 160 CD patients, 120 were female, 40 were male. The EMA specificity and sensitivity were calculated as 98% and 80% respectively. Specificity and sensitivity of Anti-tTG IgA were determined as 99% and 96% respectively. Conclusion: The specificity of EMA for CD was excellent because all EMA-positive patients (n = 144) were diagnosed with CD. The presence of human anti-tTG IgA was found as a reliable marker for diagnosis and follow-up the CD. Diagnosis of CD should be established on both the clinical and serologic profiles together.

Keywords: anti-endomysial antibody, anti-tTG IgA, coeliac disease, immunofluorescence assay (IFA)

Procedia PDF Downloads 243
5336 Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis

Authors: Assel Thami Lahlou, Soufiane Stouti, Ismail Lagrat, Hamid Mounir, Oussama Bouazaoui

Abstract:

The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage.

Keywords: aerodynamic, CFD, helicopter, stall, blades, main rotor, minimum pitch angle, maximum pitch angle

Procedia PDF Downloads 20
5335 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 150
5334 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats

Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju

Abstract:

The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.

Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis

Procedia PDF Downloads 375
5333 Pontine and Lobar Hemorrhage from Venous Infarction secondary to Cerebral Venous Thrombosis in a 70-year old Filipina with Protein S Deficiency: A Case Report

Authors: Michelangelo Liban, Debbie Liquete

Abstract:

A 70-year-old right-handed Filipina was seen by the Neurology service due to a new onset headache, bi-occipital in location, dull squeezing in character with a pain score of 8/10 with associated nausea and one episode of non-projectile, which provided no relief. Due to the alarming features of the headache despite the absence of risk factors and an essentially normal neurologic examination, a cranial CTA+CTV was done, which revealed a small left frontal and small right pontine hyper density with minimal perilesional edema. Findings also revealed filling defects in the straight and right transverse sinus and a consideration of hypoplastic left transverse sinus with no definite evidence of aneurysm nor A-V malformation. She had normal levels of D-Dimer, Protein C, ANA and Anti-DS DNA but had a low Protein S of 56% (N.V is 70-120%). Antithrombin, homocysteine and Factor V Leiden were not done due to unavailability of the tests. She was then treated as a case of Cerebral Venous Thrombosis with multiple hemorrhage from venous infraction and was given anticoagulants which provided relief of the headache. She did not manifest with any further cortical, bulbar or sensorimotor deficits hence was discharged improved after 15 hospital days. To our knowledge, there are no case reports of patients with CVT from Protein S deficiency and venous anomaly that presented with multiple hemorrhage from venous infarction, more so affecting the brainstem. In this paper, a rare location of CVT in a newly diagnosed Protein S deficient patient is presented together with an uneventful course and favorable outcome.

Keywords: protein S deficiency, cerebral venous thrombosis, pontine hemorrhage from venous infarction, elderly

Procedia PDF Downloads 57
5332 Role of Autophagic Lysosome Reformation for Cell Viability in an in vitro Infection Model

Authors: Muhammad Awais Afzal, Lorena Tuchscherr De Hauschopp, Christian Hübner

Abstract:

Introduction: Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway, which can be induced by extrinsic and intrinsic stressors in living systems to adapt to fluctuating environmental conditions. In the context of inflammatory stress, autophagy contributes to the elimination of invading pathogens, the regulation of innate and adaptive immune mechanisms, and regulation of inflammasome activity as well as tissue damage repair. Lysosomes can be recycled from autolysosomes by the process of autophagic lysosome reformation (ALR), which depends on the presence of several proteins including Spatacsin. Thus ALR contributes to the replenishment of lysosomes that are available for fusion with autophagosomes in situations of increased autophagic turnover, e.g., during bacterial infections, inflammatory stress or sepsis. Objectives: We aimed to assess whether ALR plays a role for cell survival in an in-vitro bacterial infection model. Methods: Mouse embryonic fibroblasts (MEFs) were isolated from wild-type mice and Spatacsin (Spg11-/-) knockout mice. Wild-type MEFs and Spg11-/- MEFs were infected with Staphylococcus aureus (multiplication of infection (MOI) used was 10). After 8 and 16 hours of infection, cell viability was assessed on BD flow cytometer through propidium iodide intake. Bacterial intake by cells was also calculated by plating cell lysates on blood agar plates. Results: in-vitro infection of MEFs with Staphylococcus aureus showed a marked decrease of cell viability in ALR deficient Spatacsin knockout (Spg11-/-) MEFs after 16 hours of infection as compared to wild-type MEFs (n=3 independent experiments; p < 0.0001) although no difference was observed for bacterial intake by both genotypes. Conclusion: Suggesting that ALR is important for the defense of invading pathogens e.g. S. aureus, we observed a marked increase of cell death in an in-vitro infection model in cells with compromised ALR.

Keywords: autophagy, autophagic lysosome reformation, bacterial infections, Staphylococcus aureus

Procedia PDF Downloads 127
5331 Immune Modulation and Cytomegalovirus Reactivation in Sepsis-Induced Immunosuppression

Authors: G. Lambe, D. Mansukhani, A. Shetty, S. Khodaiji, C. Rodrigues, F. Kapadia

Abstract:

Introduction: Sepsis is known to cause impairment of both innate and adaptive immunity and involves an early uncontrolled inflammatory response, followed by a protracting immunosuppression phase, which includes decreased expression of cell receptors, T cell anergy and exhaustion, impaired cytokine production, which may cause high risk for secondary infections due to reduced response to antigens. Although human cytomegalovirus (CMV) is widely recognized as a serious viral pathogen in sepsis and immunocompromised patients, the incidence of CMV reactivation in patients with sepsis lacking strong evidence of immunosuppression is not well defined. Therefore, it is important to determine an association between CMV reactivation and sepsis-induced immunosuppression. Aim: To determine the association between incidence of CMV reactivation and immune modulation in sepsis-induced immunosuppression with time. Material and Methods: Ten CMV-seropositive adult patients with severe sepsis were included in this study. Blood samples were collected on Day 0, and further weekly up to 21 days. CMV load was quantified by real-time PCR using plasma. The expression of immunosuppression markers, namely, HLA-DR, PD-1, and regulatory T cells, were determined by flow cytometry using whole blood. Results: At Day 0, no CMV reactivation was observed in 6/10 patients. In these patients, the median length for reactivation was 14 days (range, 7-14 days). The remaining four patients, at Day 0, had a mean viral load of 1802+2599 copies/ml, which increased with time. At Day 21, the mean viral load for all 10 patients was 60949+179700 copies/ml, indicating that viremia increased with the length of stay in the hospital. HLA-DR expression on monocytes significantly increased from Day 0 to Day 7 (p = 0.001), following which no significant change was observed until Day 21, for all patients except 3. In these three patients, HLA-DR expression on monocytes showed a decrease at elevated viral load (>5000 copies/ml), indicating immune suppression. However, the other markers, PD-1 and regulatory T cells, did not show any significant changes. Conclusion: These preliminary findings suggest that CMV reactivation can occur in patients with severe sepsis. In fact, the viral load continued to increase with the length of stay in the hospital. Immune suppression, indicated by decreased expression of HLA-DR alone, was observed in three patients with elevated viral load.

Keywords: CMV reactivation, immune suppression, sepsis immune modulation, CMV viral load

Procedia PDF Downloads 134
5330 Determinants of Non-Performing Loans: An Empirical Investigation of Bank-Specific Micro-Economic Factors

Authors: Amir Ikram, Faisal Ijaz, Qin Su

Abstract:

The empirical study was undertaken to explore the determinants of non-performing loans (NPLs) of small and medium enterprises (SMEs) sector held by the commercial banks. Primary data was collected through well-structured survey questionnaire from credit analysts/bankers of 42 branches of 9 commercial banks, operating in the district of Lahore (Pakistan), for 2014-2015. Selective descriptive analysis and Pearson chi-square technique were used to illustrate and evaluate the significance of different variables affecting NPLs. Branch age, duration of the loan, and credit policy were found to be significant determinants of NPLs. The study proposes that bank-specific and SME-specific microeconomic variables directly influence NPLs, while macroeconomic factors act as intermediary variables. Framework exhibiting causal nexus of NPLs was also drawn on the basis of empirical findings. The results elaborate various origins of NPLs and suggest that they are primarily instigated by the loan sanctioning procedure of the financial institution. The paper also underlines the risk management practices adopted by the bank at branch level to averse the risk of loan default. Empirical investigation of bank-specific microeconomic factors of NPLs with respect to Pakistan’s economy is the novelty of the study. Broader strategic policy implications are provided for credit analysts and entrepreneurs.

Keywords: commercial banks, microeconomic factors, non-performing loans, small and medium enterprises

Procedia PDF Downloads 243
5329 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 200
5328 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 300
5327 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 95
5326 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters

Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang

Abstract:

Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.

Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology

Procedia PDF Downloads 54
5325 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators

Authors: Gabrielle Brand, Christopher Etherton-Beer

Abstract:

The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.

Keywords: narrative, photo-elicitation, reflective learning, qualitative research

Procedia PDF Downloads 267
5324 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell

Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang

Abstract:

Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.

Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers

Procedia PDF Downloads 437
5323 PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues

Authors: F. Polito, M. Cucinotta, A. Conti, C. Lo Giudice, C. Tomasello, F. Angileri, D. La Torre, M. Aguennouz

Abstract:

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors.

Keywords: glioblastoma, PTOP, telomere, brain tumors

Procedia PDF Downloads 327
5322 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation

Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates

Abstract:

The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.

Keywords: biomass, distribuited generation, small-scale, Monte Carlo

Procedia PDF Downloads 273
5321 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 392
5320 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: anti-spoofing, CNN, fingerprint recognition, GAN

Procedia PDF Downloads 174
5319 Rice Mycotoxins Fate During In vitro Digestion and Intestinal Absorption: the Effect of Individual and Combination Exposures

Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha

Abstract:

About half of the world's population eats rice daily, making it the primary food source for billions of people. Besides its nutrition potential, rice can be a significant route of exposure to many contaminants. Mycotoxins are an example of such contaminants that can be present in rice. Among them, ochratoxin (OTA), citrinin (CIT), and zearalenone (ZEN) are frequently reported in rice. During digestion, only a fraction of mycotoxins from food can be absorbed (bioaccessible fraction), influencing their ability to cause toxic effects. Insufficient knowledge of the bioavailability of mycotoxins, alone and in combination, may hinder an accurate risk assessment of contaminants ingested by humans. In this context, two different rice (Oryza sativa) varieties, Carolino white and Carolino brown, both with and without turmeric, were boiled and individually spiked with OTA, CIT, and ZEN plus with its combination. Subsequently, samples were submitted to the INFOGEST harmonized in vitro digestion protocol to evaluate the bioaccessibility of mycotoxins. Afterward, the in vitro intestinal transport of the mycotoxins, both alone and in combination, was evaluated in digests of Carolino white rice with and without turmeric. Assays were performed with a monolayers of of Caco-2 and HT-29 cells. Bioaccessibility of OTA and ZEN, alone and in combination, were similar in Carolino white and brown rice with or without turmeric. For CIT, when Carolino white rice was used, the bioaccessibility was higher alone than in combination (62.00% vs. 25.00%, without turmeric; 87.56% vs. 53.87%, with turmeric); however, with Carolino brown rice was the opposite (66.38% vs. 75.20%, without turmeric; 43.89% vs. 59.44%, with turmeric). All the mycotoxins, isolated, reached the higher bioaccessibility in the Carolino white rice with turmeric (CIT: 87.56%; OTA: 59.24%; ZEN: 58.05%). When mycotoxins are co-present, the higher bioaccessibility of each one varies with the type of rice. In general, when turmeric is present, bioaccessibility increases, except for CIT, using Carolino brown rice. Concerning the intestinal absorption in vitro, after 3 hours of transport, all mycotoxins were detected in the basolateral compartment being thus transported through the cells monolayer. ZEN presented the highest fraction absorbed isolated and combined, followed by CIT and OTA. These findings highlight that the presence of other components in the complex dietary matrix, like turmeric, and the co-presence of mycotoxins can affect its final bioavailability with obvious implications for health risk. This work provides new insights to qualitatively and quantitatively describe mycotoxin in rice fate during human digestion and intestinal absorption and further contribute to better risk assessment.

Keywords: bioaccessibility, digestion, intestinal absorption, mycotoxins

Procedia PDF Downloads 46
5318 Epigenetic and Archeology: A Quest to Re-Read Humanity

Authors: Salma A. Mahmoud

Abstract:

Epigenetic, or alteration in gene expression influenced by extragenetic factors, has emerged as one of the most promising areas that will address some of the gaps in our current knowledge in understanding patterns of human variation. In the last decade, the research investigating epigenetic mechanisms in many fields has flourished and witnessed significant progress. It paved the way for a new era of integrated research especially between anthropology/archeology and life sciences. Skeletal remains are considered the most significant source of information for studying human variations across history, and by utilizing these valuable remains, we can interpret the past events, cultures and populations. In addition to archeological, historical and anthropological importance, studying bones has great implications in other fields such as medicine and science. Bones also can hold within them the secrets of the future as they can act as predictive tools for health, society characteristics and dietary requirements. Bones in their basic forms are composed of cells (osteocytes) that are affected by both genetic and environmental factors, which can only explain a small part of their variability. The primary objective of this project is to examine the epigenetic landscape/signature within bones of archeological remains as a novel marker that could reveal new ways to conceptualize chronological events, gender differences, social status and ecological variations. We attempted here to address discrepancies in common variants such as methylome as well as novel epigenetic regulators such as chromatin remodelers, which to our best knowledge have not yet been investigated by anthropologists/ paleoepigenetists using plethora of techniques (biological, computational, and statistical). Moreover, extracting epigenetic information from bones will highlight the importance of osseous material as a vector to study human beings in several contexts (social, cultural and environmental), and strengthen their essential role as model systems that can be used to investigate and construct various cultural, political and economic events. We also address all steps required to plan and conduct an epigenetic analysis from bone materials (modern and ancient) as well as discussing the key challenges facing researchers aiming to investigate this field. In conclusion, this project will serve as a primer for bioarcheologists/anthropologists and human biologists interested in incorporating epigenetic data into their research programs. Understanding the roles of epigenetic mechanisms in bone structure and function will be very helpful for a better comprehension of their biology and highlighting their essentiality as interdisciplinary vectors and a key material in archeological research.

Keywords: epigenetics, archeology, bones, chromatin, methylome

Procedia PDF Downloads 96
5317 Identification of Potential Small Molecule Regulators of PERK Kinase

Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl

Abstract:

PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.

Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease

Procedia PDF Downloads 470
5316 Application of Topical Imiquimod for Treatment Cervical Intraepithelial Neoplasia in Young Women: A Preliminary Result of a Pilot Study

Authors: Phill-Seung Jung, Dae-Yeon Kim

Abstract:

Objectives: In young, especially nulliparous women, it is not easy to decide on excisional therapy for cervical intraepithelial neoplasia (CIN). We aimed to evaluate how effective topical imiquimod is in the treatment of high-grade CIN so that excisional therapy can be avoided in young women. Methods: Patients with CIN were allocated to this pilot study. They did not want excisional therapy and agreed with topical imiquimod therapy, which required once-a-week hospital visit for 8 weeks for the application of imiquimod to the cervix by a gynecologic oncologist. If the lesion got worse during treatment, it was decided to convert imiquimod therapy to excisional therapy. Results: A total of 36 patients with a median age of 29 years (range, 22–41 years) agreed to receive topical imiquimod therapy. Of these, 32 patients (88.9%) were positive for high-risk human papillomavirus (HR HPV). Twenty-five patients (69.4%) had low-grade squamous intraepithelial lesion (LSIL), and 11 (30.6%) had high-grade squamous intraepithelial lesion (HSIL) on their initial LBC. Twenty-eight patients underwent punch biopsy, which showed CIN 1 in 7 (19.4%), CIN 2 in 11 (30.6%), and CIN 3 in 10 (27.8%) patients. Twenty patients finished the 8-week imiquimod therapy. Among them, 14 patients had CIN 2 or 3, and 6 patients had CIN 1. HR HPV was positive in 12 patients. On the last examination, 14 patients (70.0%) had negative intraepithelial lesions, 3 (15.0%) had atypical squamous cells of undetermined significance, and 1 (5.0%) had LSIL. Two patients had persistent HSIL: 1 patient underwent loop electrosurgical excision procedure, resulting in CIN 3 with positive resection margin, and the other patient underwent punch biopsy, resulting in intermediate cells and restarted imiquimod therapy. Only 7 patients were negative for HR HPV. Conclusions: This study showed that topical imiquimod therapy was effective for the treatment of high-grade CIN, with a histologic regression rate of 85.7% (14/20) and HPV eradication rate of 25.0% (8/32). Based on our findings, topical imiquimod therapy might have a successful therapeutic effect in young women with CIN 2-3 so that they can avoid excisional therapy. In addition, it could be a more reassuring treatment option for CIN 1 than just follow-up after few months. To confirm its efficacy, a phase II study with larger cohort would be needed.

Keywords: Imiquimod, Cervical Intraepthelial Neoplasia, Cervical Dysplasia, Human Papillomavirus

Procedia PDF Downloads 242
5315 The Potential of Small-Scale Urban Food Growing to Supplement Households’ Diets and Provide Health and Wellbeing Benefits

Authors: Bethany Leake, Samantha Caton, Paul Norman, Jill Edmondson

Abstract:

With the majority of the UK population residing in urban areas and with the pressures both environmentally and socially on rural agriculture, the role of urban food production, particularly urban horticulture (UH), is increasingly important in the future of UK food security. UH has the potential to provide an important contribution to urban diets and to provide additional benefits to human health and well-being. While allotments are the traditional focus of UH and play an important role, as access to this type of land is limited and unequal across cities, other forms of UH space, such as domestic growing, will need to be utilized to provide a significant contribution to urban diets. It is theorized that this smaller scale of growing may also be a more accessible way of engaging novice growers in UH. A collaborative research project, Urban Harvest, was designed between the University of Sheffield and Sheffield-based food organizations, which aimed to engage inexperienced gardeners in UH by providing them with home food-growing kits (Grow-Kits). Grow-Kits were provided to 189 participants across Sheffield in 2022, 48% of whom had never grown food before. Data collected through surveys and interviews will help us to evaluate the effect of small-scale food growing on health and wellbeing and the potential of this type of scheme to encourage future UH engagement. This data and increasing evidence on the co-benefits of UH have important implications not only for local food security but also for urban health inequalities and the potential use of this activity for preventative healthcare.

Keywords: urban horticulture, health and wellbeing, food security, nutrition

Procedia PDF Downloads 64
5314 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 72
5313 Flood Risk Management in Low Income Countries: Balancing Risk and Development

Authors: Gavin Quibell, Martin Kleynhans, Margot Soler

Abstract:

The Sendai Framework notes that disaster risk reduction is essential for sustainable development, and Disaster Risk Reduction is included in 3 of the Sustainable Development Goals (SDGs), and 4 of the SDG targets. However, apart from promoting better governance and resourcing of disaster management agencies, little guidance is given how low-income nations can balance investments across the SDGs to achieve sustainable development in an increasingly climate vulnerable world with increasing prevalence of flood and drought disasters. As one of the world’s poorest nations, Malawi must balance investments across all the SDGs. This paper explores how Malawi’s National Guidelines for Community-based Flood Risk Management integrate sustainable development and flood management objectives at different administrative levels. While Malawi periodically suffers from large, widespread flooding, the greatest impacts are felt through the smaller annual floods and flash floods. The Guidelines address this through principles that recognize that while the protection of human life is the most important priority for flood risk management, addressing the impacts of floods on the rural poor and the economy requires different approaches. The National Guidelines are therefore underpinned by the following; 1. In the short-term investments in flood risk management must focus on breaking the poverty – vulnerability cycle; 2. In the long-term investments in the other SDGs will have the greatest flood risk management benefits; 3. If measures are in place to prevent loss of life and protect strategic infrastructure, it is better to protect more people against small and medium size floods than fewer people against larger floods; 4. Flood prevention measures should focus on small (1:5 return period) floods; 5. Flood protection measures should focus on small and medium floods (1:20 return period) while minimizing the risk of failure in larger floods; 6. The impacts of larger floods ( > 1:50) must be addressed through improved preparedness; 7. The impacts of climate change on flood frequencies are best addressed by focusing on growth not overdesign; and 8. Manage floods and droughts conjunctively. The National Guidelines weave these principles into Malawi’s approach to flood risk management through recommendations for planning and implementing flood prevention, protection and preparedness measures at district, traditional authority and village levels.

Keywords: flood risk management in low-income countries, sustainable development, investments in prevention, protection and preparedness, community-based flood risk management, Malawi

Procedia PDF Downloads 222
5312 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 525