Search results for: mental health detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12743

Search results for: mental health detection

10463 The Passive Recipient – How the Pupil Comes across in Local Swedish Health Policy Documents

Authors: Zofia Hammerin, Goran Basic, Disa Bergnehr

Abstract:

Ever since the Ottawa charter in 1986, health promotion through schools has been stressed across the globe. Both in the global and national discourse, schools are made responsible not only for providing education but also for working with pupil health and well-being. In Sweden, where the study is set, it is emphasized in national directives that promoting pupil health should be part of the school practice. Since the Swedish school system is decentralized, these directives need to be interpreted and recontextualized locally. This study aims to explore how the student comes across in Swedish local health policy documents. The data consists of 37 such documents called student health plans collected from different high schools throughout Sweden. The analysis was inspired by critical discourse analysis, and tentative results are divided into two main themes; the invisible actor and the passive recipient. The pupil is largely invisible in the documents, and the discourse instead focuses on school health service staff and, to some extent, the teachers. When the pupils are visible, they mainly come across as passive recipients of health promoting actions. Since participation, taking action, and feeling empowered are key aspects of health promotion, the findings could impact the pupils’ possibilities for health and well-being.

Keywords: health promotion, high school, student, sweden

Procedia PDF Downloads 106
10462 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 479
10461 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format

Procedia PDF Downloads 377
10460 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 84
10459 Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout

Authors: M. Raissy, M. Shahrani

Abstract:

The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follow: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health.

Keywords: Lactococcus garvieae, tetracycline resistance genes, rainbow trout, antimicrobial resistance

Procedia PDF Downloads 522
10458 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 373
10457 Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop, Trat Province

Authors: Pradapet Krutchangthong, Jirawat Sudsawart

Abstract:

This research aims to study the health tourism administration and factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province. The sample in this research is 361 tourists who use the service and Ban Nam Chieo Community residents who provide the service. Sampling was done from a population size of 3,780 using Taro Yamane’s formula. The tools used in the study were questionnaires and interviews. The statistics used in this research are percentage, mean and standard deviation. The result of Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop , Trat Province shows that most of them are female with bachelor degree. They are government officers with an average income between 16,001-20,000 Baht. Suggested health system activities for health tourism development are: 1) health massage, 2) herbal compress, 3) exercise in the water by walking on shell. Meanwhile, factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province are: 1) understanding the context of the community and service providers, 2) cooperation from related government and private sectors.

Keywords: health tourism, health system activities, promotion, administration

Procedia PDF Downloads 392
10456 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles

Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote

Abstract:

A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.

Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles

Procedia PDF Downloads 240
10455 Community-Based Palliative Care for Patients with Cerebral Palsy and Developmental Disabilities

Authors: Elizabeth Grier, Meg Gemmill, Mary Martin, Leora Reiter, Herman Tang, Alexandra Donaldson, Isis Lunsky, Mia Wu

Abstract:

Background: Individuals with Cerebral Palsy (CP) and/or IDD face numerous physical and mental health challenges, including difficulty accessing effective palliative care. The aim of this study is to assess the knowledge and comfort of healthcare providers in providing community-based palliative care for patients with Cerebral Palsy (CP) and severe to profound Intellectual and Developmental Disabilities (IDD). Methods: This study includes a mixed methods approach obtaining both quantitative and qualitative data. Quantitative data from palliative care practitioners was obtained through an online survey assessing comfort in symptom management, grief assessment, and goals of care discussion. This survey was distributed to physicians and allied health practitioners across Canada through the College of Family Physicians of Canada Member Interest Groups for Palliative Care and for IDD. Survey results guided the development of a semi-structured interview template, which was used to conduct a focus group on the same topic. Participants were four palliative care providers (3 physicians and one spiritual care practitioner). The focus group transcript is currently undergoing thematic analysis using NVivo 12 software. Results: 57 palliative care practitioners completed the survey. 87% of participants indicated they have provided palliative care services for persons with CP and/or IDD. Findings suggest practitioners are somewhat confident in identifying specific physical symptoms (dyspnea, pressure ulcers) but less confident in identifying physical/emotional pain, addressing grief, and prognosticating life expectancy in this population. 54% of responses indicated they had little/no training on palliating those with CP or IDD, and 45% somewhat or strongly disagree members of their profession can manage symptoms for this population. Focus group analysis is underway, and results will be available at the time of the poster presentation. Conclusion: Persons with CP and IDD are more likely to experience severe health inequities when accessing palliative care. Results of this study suggest further education is needed for palliative care professionals to address the barriers and challenges in providing palliative care to this patient population.

Keywords: palliative care, symptom management, health equity, community healthcare, intellectual and developmental disabilities

Procedia PDF Downloads 149
10454 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 141
10453 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 79
10452 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 356
10451 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 165
10450 Assessing Secondary School Curricula in the light of Developing Quality of Life Standards of High School Students

Authors: Othman Ali Alghtani, Yahya Abdul-Ekhalq Ali, Abdullah Abdul-Ekhalq Ali, Ahmed Al Sadiq Abdul Majeed, Najwa Attian Al-Mohammadi, Obead Mozel Alharbi, Sabri Mohamed Ismail, Omar Ibrahim Asiri

Abstract:

This study assessed the curricula of secondary schools given requirements to enhance the quality of life of students. The components of quality of life were described to build a list of standards and indicators. A questionnaire assessing the dimensions of mental (cognitive and emotional), physical, digital, and social health, and environmental awareness was prepared. A descriptive-analytical approach was used on a sample of 258 teachers and educational supervisors in Tabuk. The results indicated shortcomings in the secondary school curricula regarding developing standards and indicators of components of quality of life. Results also indicated that secondary school curricula incorporated few practices to improve student’s quality of life. No significant differences were found regarding the core subject, job, gender, and years of experience.

Keywords: assessing curricula, teacher practices, quality of life, teaching practices

Procedia PDF Downloads 274
10449 Indirect Relationship between Perfectionism and Depression through Self-Silencing and Guilt: A Cross-Cultural Study

Authors: Elham Davoodi, Kylie King, Laura Jobson

Abstract:

Depression is one of the most common mental health disorders. Self-silencing theory adopts a socio-cultural lens to examine the development and maintenance of depression. Self-silencing can be a vulnerability factor in depression, and personality vulnerabilities (e.g., perfectionism) and moral emotions (e.g., guilt) are strongly related to self-silencing and depression. Yet, the relationships between all four variables among different cultural groups are not clear. We aimed to address this gap by examining whether perfectionism and depression are related indirectly through self-silencing and guilt and whether cultural group moderates these associations. Participants (N=288) from either European Australian or Iranian Australian cultural backgrounds completed an online survey assessing self-silencing, guilt, perfectionism, and depression. First, we found an indirect relationship between perfectionism and depression through self-silencing. Second, using a serial mediation model, we found an indirect association between perfectionism and depression through self-silencing and guilt. There was no evidence that cultural groups moderated these indirect relationships. Our findings leave an important question for future longitudinal studies to answer; that is, whether the association between self-silencing and depression is oversimplified and whether moral emotions in this relationship have been overlooked.

Keywords: perfectionism, depression, self-silencing, culture, guilt

Procedia PDF Downloads 16
10448 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 411
10447 In-Situ Defect Detection of Additive Manufactured Parts

Authors: Aswin T. M., Dhinnesh S., Guru Prasath K. S., Hasina M., Rajamani R.

Abstract:

Fused Deposition Modelling (FDM), a widely used Additive Manufacturing (AM) process, often faces challenges in the quality of the part, such as the formation of defects. The most common defects in FDM are stringing, dimensional inaccuracy, layer shifting, warping, and poor bridging. This work presents the summary of research work carried out in the field of AM, optimization of 3D printing process parameters, and techniques used for identifying defects. Also, an attempt is made to integrate machine vision with a deep learning model to continuously monitor the printing process. The system captures and analyzes layer-by-layer data of the printed part, detecting defects such as stringing, warping, and dimensional inaccuracy. FDM is extensively utilized across various sectors, including aerospace, automotive, healthcare, and consumer goods. In industries such as aerospace, where high precision and reliability are paramount, even minor defects can lead to component failures that compromise safety and performance. This highlights the critical need for real-time identification of defects produced during the printing process.

Keywords: FDM, defect detection, machine vision, CNN

Procedia PDF Downloads 13
10446 Separating Permanent and Induced Magnetic Signature: A Simple Approach

Authors: O. J. G. Somsen, G. P. M. Wagemakers

Abstract:

Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.

Keywords: magnetic signature, data analysis, magnetization, deperming techniques

Procedia PDF Downloads 455
10445 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 81
10444 Impact of Internal Control on Fraud Detection and Prevention: A Survey of Selected Organisations in Nigeria

Authors: Amos Olusola Akinola

Abstract:

The aim of this study is to evaluate the internal control system on fraud prevention in Nigerian business organizations. A survey research was undertaken in five organizations from the banking and manufacturing sectors in Nigeria using the simple random sampling technique and primary data was obtained with the aid structured questionnaire drawn on five likert’s scale. Four Hypotheses were formulated and tested using the T-test Statistics, Correlation and Regression Analysis at 95% confidence interval. It was discovered that internal control has a significant positive relationship with fraud prevention and that a weak internal control system permits fraudulent activities among staff. Based on the findings, it was recommended that organizations should continually and methodically review and evaluate the components of its internal control system whether activities are working as planned or not and that every organization should have pre-determined guidelines for conducting its operations and ensures compliance with these set guidelines while proactive steps should be taken to establish the independence of the internal audit by making the audit reportable to the governing council of an organization and not the chief executive officer.

Keywords: internal control, internal system, internal audit, fraud prevention, fraud detection

Procedia PDF Downloads 389
10443 The Comparison of Depression Level of Male Athlete Students with Non-Athlete Students

Authors: Seyed Hossein Alavi, Farshad Ghazalian, Soghra Jamshidi

Abstract:

The present study was done with the purpose of considering mental health and general purpose of describing and comparing depression level of athlete and non-athlete male students educational year of 2012 Research method in this study in proportion to the selective title, descriptive method is causative – comparative. Research samples were selected randomly from B.A students of different fields including 500 students. Average mean of research samples was between 20 to 25 years. Data collection tool is questionnaire of depression measurement of Aroun Beck (B.D.I) that analyzes and measures 21 aspects of depression in 6 ranges. Operation related to analysis of statistical data to extraction of results was done by SPSS software. To extraction of research obtained by comparison of depression level mean, show that the hypothesis of the research (H_1) based on the existence of the significance scientific difference was supported and showed that there’s a significance difference between depression level of athlete male students in comparison with depression level of non-athlete male students. Thus, depression level of athlete male students was lower in comparison with depression level of non-athlete male students.

Keywords: depression, athlete students, non-athlete students

Procedia PDF Downloads 484
10442 Economic and Social Well-Being for Migrant Workers: Asian Experiences

Authors: Mohsin Reza, Thirunaukarasu Subramaniam, M. Rezaul Islam

Abstract:

In Asia, economic and social well-being issues are rarely addressed. The major characteristics of the migrant workers in Asian countries are seriously exploited, marginalized, and infrequently looked from human rights perspective. This paper explored the opportunities and shortages of economic and social well-being for the migrant workers in Asia. A Qualitative Interpretative Meta-Synthesis (QIMS) was conducted to analyze the contextual socio-economic factors that characterized migrant workers’ economic and social well-being. It is perceived that in most of the recruiting countries, there are lacks of government commitments to the international protocols, conventions and laws that they ratified towards safeguarding migrant workers’ economic and social well-being. Results showed that the migrant workers had lack of job security, poor salary, long working hours, low access to the public services, poor health, poor living and working conditions, lack of legal rights, physical and mental threats. The finding would be important guideline to the governments, policy makers, legal rights practitioners, and human rights organizations.

Keywords: Asia, economic well-being, social well-being, migrant workers, human rights

Procedia PDF Downloads 328
10441 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 277
10440 Health Post A Sustainable Prototype for the Third World

Authors: Chizzoniti Domenico, Beggiora Klizia, Cattani Letizia, Moscatelli Monica

Abstract:

This paper concerns the study of sustainable construction materials applied on the "Health Post", a prototype for the primary health care situated in alienated areas of the world. It's suitable for social and climatic Sub-Saharan context; however, it could be moved in other countries of the world with similar urgent needs. The idea is to create a Health Post with local construction materials that have a low environmental impact and promote the local workforce allowing reuse of traditional building techniques lowering production costs and transport. The aim of Primary Health Care Centre is to be a flexible and expandable structure identifying a modular form that can be repeated several times to expand its existing functions. In this way it could be not only a health care centre but also a socio-cultural facility.

Keywords: low costs building, sustainable construction materials, green construction system, prototype, health care, emergency

Procedia PDF Downloads 487
10439 Development of Sports Nation on the Way of Health Management

Authors: Beatrix Faragó, Zsolt Szakály, Ágnes Kovácsné Tóth, Csaba Konczos, Norbert Kovács, Zsófia Pápai, Tamás Kertész

Abstract:

The future of the nation is the embodiment of a healthy society. A key segment of government policy is the development of health and a health-oriented environment. As a result, sport as an activator of health is an important area for development. In Hungary, sport is a strategic sector with the aim of developing a sports nation. The function of sport in the global society is multifaceted, which is manifested in both social and economic terms. The economic importance of sport is gaining ground in the world, with implications for Central and Eastern Europe. Smaller states, such as Hungary, cannot ignore the economic effects of exploiting the effects of sport. The relationship between physical activity and health is driven by the health economy towards the nation's economic factor. In our research, we analyzed sport as a national strategy sector and its impact on age groups. By presenting the current state of health behavior, we get an idea of the directions where development opportunities require even more intervention. The foundation of the health of a nation is the young age group, whose shaping of health will shape the future generation. Our research was attended by university students from the Faculty of Health and Sports Sciences who will be experts in the field of health in the future. The other group is the elderly, who are a growing social group due to demographic change and are a key segment of the labor market and consumer society. Our study presents the health behavior of the two age groups, their differences, and similarities. The survey also identifies gaps in the development of a health management strategy that national strategies should take into account.

Keywords: competitiveness, health behavior, health economy, health management, sports nation

Procedia PDF Downloads 161
10438 A Systematic Review in the Impacts of Skilled Parent Migration on Left-Behind Children: Gaps in the Existing Knowledge

Authors: Yassir Mohammed

Abstract:

The study examines the impact of skilled parental migration on left-behind children. It uses the SCOPUS database to evaluate the existing literature from 1972 to 2022 and synthesizes data using the PRISMA framework and bibliometric method of analysis. 49 articles out of 202 papers were involved in the synthesis. International migration, outcome migration, consequence, parental migration, high-skill and left-behind children, and left-behind preschool were all searched. The research found that mental health issues, self-isolation, and physical harm have negative impacts, while sending children to good schools, having good academic records, and better medical care have positive impacts. The study also found that gender gaps increase in some countries while decreasing in others. Further research is needed on child maltreatment, academic performance, subjective well-being, societal effects, behavioral difficulties, and quality of life. The study only included peer-reviewed English publications in the final analysis.

Keywords: parental migration, impact of migration, systematic review, left-behind children

Procedia PDF Downloads 75
10437 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 35
10436 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 86
10435 Teacher's Health: Evaluation of the Health Status of Portuguese and Spanish Teachers

Authors: Liberata Borralho, Saúl N. de Jesus, Adelinda Candeias, Victória Fernández-Puig

Abstract:

In the last decades, we have witnessed a deterioration in the health of teachers worldwide, reflecting the constant social, political and economic changes. The quality of teaching and the success of students depends on the health status of the teachers, which justifies the importance of periodically evaluating their health. With this purpose, the Teacher’s Health Questionnaire was applied to 15.394 teachers teaching in Portugal and Spain (6.208 Spanish and 9.186 Portuguese) of primary and secondary education (3.482 men, 11.911 women). This questionnaire is specific and includes both the main risks of the teaching profession and the manifestations of teacher well-being, according to the definition recommended by the World Health Organization. A descriptive analysis of the results was carried out, including a study of the dimensions and the differences according to some sociodemographic and professional variables, from an analysis of variance ANOVA, applying the Bonferroni correction. Cluster analysis (K-means) allowed us to obtain cutoff scores to assess health status. The results allow concluding that Portuguese teachers perceive a poor well-being in the performance of their professional activity and that more than half present manifestations in the various dimensions of health deterioration, highlighting the exhaustion and cognitive disorders. In turn, Spanish teachers demonstrate a high level of well-being, being the musculoskeletal dimensions and cognitive disorders the main manifestations of deterioration of health.

Keywords: job prevention, occupational health, teacher’s health, teachers work risks, teacher’s well-being

Procedia PDF Downloads 239
10434 The Effects of Music Therapy on Positive Negative Syndrome Scale, Cognitive Function, and Quality of Life in Female Schizophrenic Patients

Authors: Elmeida Effendy, Mustafa M. Amin, Nauli Aulia Lubis, P. J. Sirait

Abstract:

Music therapy may have an effect on mental illnesses. This is a comparative, quasi-experimental study to examine the effect of music therapy added to standard care on Positive Negative Syndrome Scale, Cognitive Function and Quality of Life in female schizophrenic patients. 50 schizophrenic participants who were diagnosed with semistructured MINI ICD-X, were assigned into two groups received pharmacotherapy. Participants were assigned into each group of therapy by using matched allocation method. Music therapy added on to the first group. They received music therapy, using Mozart Sonata four times a week, over a period of six week. Positive and negative symptoms were measured by using Positive and Negative Syndrome Scale (PANSS). Cognitive function were measured by using Mini Mental State Examination (MMSE) and Montreal Cognitive Assessment (MOCA). All rating scale were administrated by certified skill residents every week after music therapy session. The participants who were received pharmaco-and-music therapy significantly showed greater response than who received pharmacotherapy only. The mean difference of response were -6,6164 (p=0,001) for PANNS, 2,911 (p=0,004) for MMSE, 3,618 (p=0,001) for MOCA, 4,599 (p=0,001) for SF-36. Music therapy have beneficial effects on PANSS, Cognitive Function and Quality of Life in schizophrenic patients.

Keywords: music therapy, rating scale, schizophrenia, symptoms

Procedia PDF Downloads 352