Search results for: material structure changing
12830 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation
Procedia PDF Downloads 46012829 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis
Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: diffusion bonding, temperature, pressure, drawing speed
Procedia PDF Downloads 37312828 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 48212827 Synthesis of Rare-Earth Pyrazolate Compounds
Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon
Abstract:
Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures
Procedia PDF Downloads 22012826 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members
Authors: I. Gkolfinopoulos, N. Chijiwa
Abstract:
To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon
Procedia PDF Downloads 14712825 Experimental and Theoretical Approach, Hirshfeld Surface, Reduced Density Gradient, Molecular Docking of a Thiourea Derivative
Authors: Noureddine Benharkat, Abdelkader Chouaih, Nourdine Boukabcha
Abstract:
A thiourea derivative compound was synthesized and subjected to structural analysis using single-crystal X-ray diffraction (XRD). The crystallographic data unveiled its crystallization in the P21/c space group within the monoclinic system. Examination of the dihedral angles indicated a notable non-planar structure. To support and interpret these resulats, density functional theory (DFT) calculations were conducted utilizing the B3LYP functional along with a 6–311 G (d, p) basis set. Additionally, to assess the contribution of intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were employed. Various types of interactions, whether weak intramolecular or intermolecular, within a molecule can significantly impact its stability. The distinctive signature of non-covalent interactions can be detected solely through electron density analysis. The NCI-RDG analysis was employed to investigate both repulsive and attractive van der Waals interactions while also calculating the energies associated with intermolecular interactions and their characteristics. Additionally, a molecular docking study was studied to explain the structure-activity relationship, revealing that the title compound exhibited an affinity energy of -6.8 kcal/mol when docked with B-DNA (1BNA).Keywords: computational chemistry, density functional theory, crystallography, molecular docking, molecular structure, powder x-ray diffraction, single crystal x-ray diffraction
Procedia PDF Downloads 6012824 Investigation of Zeolite and Silica Fume Addition on Durability of Cement Composites
Authors: Martina Kovalcikova, Adriana Estokova
Abstract:
Today, concrete belongs to the most frequently used materials in the civil engineering industry for many years. Consuming energy in cement industry is very high and CO₂ emissions generated during the production of Portland cement has serious environmental threatens. Therefore, utilization of pozzolanic material as a supplementary cementitious material has a direct relationship with the sustainable development. The paper presents the results of the comparative study of the resistance of the Slovak origin zeolite based cement composites with addition of silica fume exposed to the sulfate environment. The various aggressive media were used for the experiment: sulfuric acid with pH 4, distilled water and magnesium sulfate solution with a concentration of 3 g/L of SO₄²−. The laboratory experiment proceeded during 180 days under model conditions. The changes in the elemental concentrations of calcium and silicon in liquid leachates were observed.Keywords: concrete, leaching, silica fume, sulfuric acid, zeolite
Procedia PDF Downloads 27012823 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics
Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado
Abstract:
The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F
Procedia PDF Downloads 50312822 Thickness Effect on Concrete Fracture Toughness K1c
Authors: Benzerara Mohammed, Redjel Bachir, Kebaili Bachir
Abstract:
The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.Keywords: elementary representative volume, concrete, fissure, toughness
Procedia PDF Downloads 22212821 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm
Procedia PDF Downloads 33612820 Environmental Limits of Using Newly Developed Progressive Polymer Protection and Repair Systems
Authors: Jana Hodna, Bozena Vacenovska, Vit Petranek
Abstract:
The paper is focused on the identification of limiting environmental factors of individual industrial floors on which newly developed polymer protection and repair systems with the use of secondary raw materials will be used. These mainly include floors with extreme stresses and special requirements for materials used. In relation to the environment of a particular industrial floor, it is necessary to ensure, for example, chemical stability, resistance to higher temperatures, resistance to higher mechanical stress, etc. for developed materials, which is reflected in the demands for the developed material systems. The paper describes individual environments and, in relation to them, also requirements for individual components of the developed materials and for the developed materials as a whole.Keywords: limits, environment, polymer, industrial floors, recycling, secondary raw material, protective system
Procedia PDF Downloads 27012819 The Material Behavior in Curved Glulam Beam of Jabon Timber
Authors: Erma Desmaliana, Saptahari Sugiri
Abstract:
Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.Keywords: curved glulam beam, HTR&HTI, load carrying, strength
Procedia PDF Downloads 29812818 Mesoporous Nanocomposites for Sustained Release Applications
Authors: Daniela Istrati, Alina Morosan, Maria Stanca, Bogdan Purcareanu, Adrian Fudulu, Laura Olariu, Alice Buteica, Ion Mindrila, Rodica Cristescu, Dan Eduard Mihaiescu
Abstract:
Our present work is related to the synthesis, characterization and applications of new nanocomposite materials based on silica mesoporous nanocompozites systems. The nanocomposite support was obtained by using a specific step–by–step multilayer structure buildup synthetic route, characterized by XRD (X-Ray Difraction), TEM (Transmission Electron Microscopy), FT-IR (Fourier Transform-Infra Red Spectrometry), BET (Brunauer–Emmett–Teller method) and loaded with Salvia officinalis plant extract obtained by a hydro-alcoholic extraction route. The sustained release of the target compounds was studied by a modified LC method, proving low release profiles, as expected for the high specific surface area support. The obtained results were further correlated with the in vitro / in vivo behavior of the nanocomposite material and recommending the silica mesoporous nanocomposites as good candidates for biomedical applications. Acknowledgements: This study has been funded by the Research Project PN-III-P2-2.1-PTE-2016-0160, 49-PTE / 2016 (PROZECHIMED) and Project Number PN-III-P4-ID-PCE-2016-0884 / 2017.Keywords: biomedical, mesoporous, nanocomposites, natural products, sustained release
Procedia PDF Downloads 21812817 The Impact of Milk Transport on Its Quality
Authors: Urszula Malaga-Toboła, Marek Gugała, Rafał Kornas, Robert Rusinek, Marek Gancarz
Abstract:
The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy.Keywords: fresh milk, transport, milk quality, dairy
Procedia PDF Downloads 8112816 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol
Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher
Abstract:
Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.Keywords: antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC, minimum inhibitory concentration
Procedia PDF Downloads 16812815 Lake of Neuchatel: Effect of Increasing Storm Events on Littoral Transport and Coastal Structures
Authors: Charlotte Dreger, Erik Bollaert
Abstract:
This paper presents two environmentally-friendly coastal structures realized on the Lake of Neuchâtel. Both structures reflect current environmental issues of concern on the lake and have been strongly affected by extreme meteorological conditions between their period of design and their actual operational period. The Lake of Neuchatel is one of the biggest Swiss lakes and measures around 38 km in length and 8.2 km in width, for a maximum water depth of 152 m. Its particular topographical alignment, situated in between the Swiss Plateau and the Jura mountains, combines strong winds and large fetch values, resulting in significant wave heights during storm events at both north-east and south-west lake extremities. In addition, due to flooding concerns, historically, lake levels have been lowered by several meters during the Jura correction works in the 19th and 20th century. Hence, during storm events, continuous erosion of the vulnerable molasse shorelines and sand banks generate frequent and abundant littoral transport from the center of the lake to its extremities. This phenomenon does not only cause disturbances of the ecosystem, but also generates numerous problems at natural or man-made infrastructures located along the shorelines, such as reed plants, harbor entrances, canals, etc. A first example is provided at the southwestern extremity, near the city of Yverdon, where an ensemble of 11 small islands, the Iles des Vernes, have been artificially created in view of enhancing biological conditions and food availability for bird species during their migration process, replacing at the same time two larger islands that were affected by lack of morphodynamics and general vegetalization of their surfaces. The article will present the concept and dimensioning of these islands based on 2D numerical modelling, as well as the realization and follow-up campaigns. In particular, the influence of several major storm events that occurred immediately after the works will be pointed out. Second, a sediment retention dike is discussed at the northeastern extremity, at the entrance of the Canal de la Broye into the lake. This canal is heavily used for navigation and suffers from frequent and significant sedimentation at its outlet. The new coastal structure has been designed to minimize sediment deposits around the exutory of the canal into the lake, by retaining the littoral transport during storm events. The article will describe the basic assumptions used to design the dike, as well as the construction works and follow-up campaigns. Especially the huge influence of changing meteorological conditions on the littoral transport of the Lake of Neuchatel since project design ten years ago will be pointed out. Not only the intensity and frequency of storm events are increasing, but also the main wind directions alter, affecting in this way the efficiency of the coastal structure in retaining the sediments.Keywords: meteorological evolution, sediment transport, lake of Neuchatel, numerical modelling, environmental measures
Procedia PDF Downloads 8512814 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy
Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori
Abstract:
Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime
Procedia PDF Downloads 61012813 Effect of Cement Amount on California Bearing Ratio Values of Different Soil
Authors: Ayse Pekrioglu Balkis, Sawash Mecid
Abstract:
Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties
Procedia PDF Downloads 39712812 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 26312811 Defects Estimation of Embedded Systems Components by a Bond Graph Approach
Authors: I. Gahlouz, A. Chellil
Abstract:
The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.Keywords: estimation, bond graph, controllability, observability
Procedia PDF Downloads 41312810 Impact of Geomagnetic Variation over Sub-Auroral Ionospheric Region during High Solar Activity Year 2014
Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini
Abstract:
The present work is an attempt to evaluate the sub-auroral ionospheric behavior under changing space weather conditions especially during high solar activity year 2014. In view of this, the GPS TEC along with Ionosonde data over Indian permanent scientific base 'Maitri', Antarctica (70°46′00″ S, 11°43′56″ E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances mainly depended upon the status of high latitudinal electro-dynamic processes along with the season of occurrence. Fortunately, in this study, both negative and positive ionospheric impact to the geomagnetic disturbances has been observed in a single year but in different seasons. The study reveals that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibiting positive ionospheric response during the winter season. Other than this, some Ionosonde based new experimental evidence also provided clear evidence of particle precipitation deep up to the low altitudinal ionospheric heights, i.e., up to E-layer by the sudden and strong appearance of E-layer at 100 km altitudes. The sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO⁺ over O⁺ at a considered region under geomagnetic disturbed condition. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. The present study provided a good scientific insight on sub-auroral ionospheric to the changing space weather condition.Keywords: high latitude ionosphere, space weather, geomagnetic storms, sub-storm
Procedia PDF Downloads 16912809 Language in Court: Ideology, Power and Cognition
Authors: Mehdi Damaliamiri
Abstract:
Undoubtedly, the power of language is hardly a new topic; indeed, the persuasive power of language accompanied by ideology has long been recognized in different aspects of life. The two and a half thousand-year-old Bisitun inscriptions in Iran, proclaiming the victories of the Persian King, Darius, are considered by some historians to have been an early example of the use of propaganda. Added to this, the modern age is the true cradle of fully-fledged ideologies and the ongoing process of centrifugal ideologization. The most visible work on ideology today within the field of linguistics is “Critical Discourse Analysis” (CDA). The focus of CDA is on “uncovering injustice, inequality, taking sides with the powerless and suppressed” and making “mechanisms of manipulation, discrimination, demagogy, and propaganda explicit and transparent.” possible way of relating language to ideology is to propose that ideology and language are inextricably intertwined. From this perspective, language is always ideological, and ideology depends on the language. All language use involves ideology, and so ideology is ubiquitous – in our everyday encounters, as much as in the business of the struggle for power within and between the nation-states and social statuses. At the same time, ideology requires language. Its key characteristics – its power and pervasiveness, its mechanisms for continuity and for change – all come out of the inner organization of language. The two phenomena are homologous: they share the same evolutionary trajectory. To get a more robust portrait of the power and ideology, we need to examine its potential place in the structure, and consider how such structures pattern in terms of the functional elements which organize meanings in the clause. This is based on the belief that all grammatical, including syntactic, knowledge is stored mentally as constructions have become immensely popular. When the structure of the clause is taken into account, the power and ideology have a preference for Complement over Subject and Adjunct. The subject is a central interpersonal element in discourse: it is one of two elements that form the central interactive nub of a proposition. Conceptually, there are countless ways of construing a given event and linguistically, a variety of grammatical devices that are usually available as alternate means of coding a given conception, such as political crime and corruption. In the theory of construal, then, which, like transitivity in Halliday, makes options available, Cognitive Linguistics can offer a cognitive account of ideology in language, where ideology is made possible by the choices a language allows for representing the same material situation in different ways. The possibility of promoting alternative construals of the same reality means that any particular choice in representation is always ideologically constrained or motivated and indicates the perspective and interests of the text-producer.Keywords: power, ideology, court, discourse
Procedia PDF Downloads 16312808 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany
Authors: Bara' Al-Mistarehi
Abstract:
Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure
Procedia PDF Downloads 17812807 Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training
Authors: Chen-Chi An, Jun-Yi He, Cheng-Han Hsieh, Chen-Ching Ting
Abstract:
This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training.Keywords: table tennis, ball machine, human play simulation, counter-rotating wheels
Procedia PDF Downloads 42912806 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping
Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin
Abstract:
One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time
Procedia PDF Downloads 38612805 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK
Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina
Abstract:
Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.Keywords: attitude, expectations, industry needs, knowledge, skills
Procedia PDF Downloads 12512804 Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution
Authors: Hermanto J. M, Mirna Febriani
Abstract:
Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin.Keywords: absorption of fluid, self-cured acrylic resin, soaked, clover solution
Procedia PDF Downloads 16312803 Heritage Tourism and the Changing Rural Landscape: Case Study of Cultural Landscape of Honghe Hani Rice Terraces
Authors: Yan Wang; Mathis Stock
Abstract:
The World Heritage Site of Honghe Hani rice terrace, also a marginal rural region in Southern China, is undergoing rapid change because of urbanization and heritage tourism. Influenced by out-migration and changing ways of living in the urbanization process, the place sees a tendency of losing its rice terrace landscape, traditional housings and other forms of cultural traditions. However, heritage tourism tends to keep the past, valorize them for tourism purposes and diversifies rural livelihood strategies. The place stands at this development trajectories, where the same resources are subjected to different uses by different actors. The research seeks to answer the questions of how the site is transformed and co-constructed by different institutions, practices and actors, and the how heritage tourism affects local livelihood. The research aims to describe the transformation of villages, rice terraces, and cultural traditions, analyze the place-making process, and assess the role of heritage tourism in local livelihood transition. The research uses a mixed of methods including direct observation, participant observation, interviews; collects various data of images, words, narratives, and statistics, and analyze them qualitatively and qualitatively. Theoretically, it is hoped that the research would reexamine the concept of heritage, the world heritage practice from UNESCO, reveal the conflicts it entails in development and brings more thoughts from a functional perspective on heritage in relation to rural development. Practically, it is also anticipated that the research could access the linkage between heritage tourism and local livelihood, and generate concrete suggestions on how tourism could engage locals and improve their livelihood.Keywords: cultural landscape, Hani rice terraces, heritage tourism, livelihood strategy, place making, rural development, transformation
Procedia PDF Downloads 23112802 An Experimental Study on Ultrasonic Machining of Pure Titanium Using Full Factorial Design
Authors: Jatinder Kumar
Abstract:
Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard and fragile such as advanced ceramics, refractories, crystals, quartz etc. There is a considerable lack of research on its application to the cost-effective machining of tough materials such as titanium. In this investigation, the application of USM process for machining of titanium (ASTM Grade-I) has been explored. Experiments have been conducted to assess the effect of different parameters of USM process on machining rate and tool wear rate as response characteristics. The process parameters that were included in this study are: abrasive grit size, tool material and power rating of the ultrasonic machine. It has been concluded that titanium is fairly machinable with USM process. Significant improvement in the machining rate can be realized by manipulating the process parameters and obtaining the optimum combination of these parameters.Keywords: abrasive grit size, tool material, titanium, ultrasonic machining
Procedia PDF Downloads 35912801 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite
Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma
Abstract:
The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape
Procedia PDF Downloads 315