Search results for: graph attention neural network
7206 Cognitive Deficits and Association with Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder in 22q11.2 Deletion Syndrome
Authors: Sinead Morrison, Ann Swillen, Therese Van Amelsvoort, Samuel Chawner, Elfi Vergaelen, Michael Owen, Marianne Van Den Bree
Abstract:
22q11.2 Deletion Syndrome (22q11.2DS) is caused by the deletion of approximately 60 genes on chromosome 22 and is associated with high rates of neurodevelopmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). The presentation of these disorders in 22q11.2DS is reported to be comparable to idiopathic forms and therefore presents a valuable model for understanding mechanisms of neurodevelopmental disorders. Cognitive deficits are thought to be a core feature of neurodevelopmental disorders, and possibly manifest in behavioural and emotional problems. There have been mixed findings in 22q11.2DS on whether the presence of ADHD or ASD is associated with greater cognitive deficits. Furthermore, the influence of developmental stage has never been taken into account. The aim was therefore to examine whether the presence of ADHD or ASD was associated with cognitive deficits in childhood and/or adolescence in 22q11.2DS. We conducted the largest study to date of this kind in 22q11.2DS. The same battery of tasks measuring processing speed, attention and spatial working memory were completed by 135 participants with 22q11.2DS. Wechsler IQ tests were completed, yielding Full Scale (FSIQ), Verbal (VIQ) and Performance IQ (PIQ). Age-standardised difference scores were produced for each participant. Developmental stages were defined as children (6-10 years) and adolescents (10-18 years). ADHD diagnosis was ascertained from a semi-structured interview with a parent. ASD status was ascertained from a questionnaire completed by a parent. Interaction and main effects of cognitive performance of those with or without a diagnosis of ADHD or ASD in childhood or adolescence were conducted with 2x2 ANOVA. Significant interactions were followed up with t-tests of simple effects. Adolescents with ASD displayed greater deficits in all measures (processing speed, p = 0.022; sustained attention, p = 0.016; working memory, p = 0.006) than adolescents without ASD; there was no difference between children with and without ASD. There were no significant differences on IQ measures. Both children and adolescents with ADHD displayed greater deficits on sustained attention (p = 0.002) than those without ADHD. There were no significant differences on any other measures for ADHD. Magnitude of cognitive deficit in individuals with 22q11.2DS varied by cognitive domain, developmental stage and presence of neurodevelopmental disorder. Adolescents with 22q11.2DS and ASD showed greater deficits on all measures, which suggests there may be a sensitive period in childhood to acquire these domains, or reflect increasing social and academic demands in adolescence. The finding of poorer sustained attention in children and adolescents with ADHD supports previous research and suggests a specific deficit which can be separated from processing speed and working memory. This research provides unique insights into the association of ASD and ADHD with cognitive deficits in a group at high genomic risk of neurodevelopmental disorders.Keywords: 22q11.2 deletion syndrome, attention deficit hyperactivity disorder, autism spectrum disorder, cognitive development
Procedia PDF Downloads 1517205 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 4007204 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC
Procedia PDF Downloads 4967203 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4147202 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2267201 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes
Authors: Sima Aznavi, Poria Fajri, Hanif Livani
Abstract:
Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.Keywords: energy management, renewable energy sources, smart grid, smart home
Procedia PDF Downloads 2487200 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 597199 Mobile WiMAX Network based Wireless Communication on Rail: An Analysis
Authors: Vinod Kumar Jatav, Dr. Vrijendra Singh
Abstract:
WiMAX is an emerging wireless technology designed by WiMAX forum. WiMAX technology delivers broadband internet access with QoS, mobility and robust security. WiMAX is among the prominent mobile broadband wireless technology which laid the foundation for the next generation networks (NGN). The next-generation communication system for railway should facilitate high level network availability, fast mobility for high speed trains with reliability, high handover rate, the firmness of train operations, and high QoS. The system should also be capable to provide various railway services by transmitting big data efficiently. One of the most promising technologies for the next generation railway wireless communication is Mobile WiMAX. This paper analyses some of the network architectures for railway wireless communication and considers the elementary concepts to facilitate the users with broadband internet access on trains. The paper aims to recognize the suitability of Mobile WiMAX technology for the special requirements of broadband internet facilities and wireless telecommunication services of Railways.Keywords: Broadband internet, IEEE 802.16e, mobile WiMAX, Railway wireless communication
Procedia PDF Downloads 5247198 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1507197 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 1957196 Using Trip Planners in Developing Proper Transportation Behavior
Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek
Abstract:
The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.Keywords: mobility, modal split, multimodal trip, multimodal platforms, sustainable transport
Procedia PDF Downloads 4117195 On Performance of Cache Replacement Schemes in NDN-IoT
Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi
Abstract:
The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.Keywords: NDN-IoT, cache replacement, performance, ndnSIM
Procedia PDF Downloads 3657194 Net Neutrality and Asymmetric Platform Competition
Authors: Romain Lestage, Marc Bourreau
Abstract:
In this paper we analyze the interplay between access to the last-mile network and net neutrality in the market for Internet access. We consider two Internet Service Providers (ISPs), which act as platforms between Internet users and Content Providers (CPs). One of the ISPs is vertically integrated and provides access to its last-mile network to the other (non-integrated) ISP. We show that a lower access price increases the integrated ISP's incentives to charge CPs positive termination fees (i.e., to deviate from net neutrality), and decreases the non-integrated ISP's incentives to charge positive termination fees.Keywords: net neutrality, access regulation, internet access, two-sided markets
Procedia PDF Downloads 3767193 Asymmetric Linkages Between Global Sustainable Index (Green Bond) and Cryptocurrency Markets with Portfolio Implications
Authors: Faheem Ur Rehman, Muhammad Khalil Khan, Miao Qing
Abstract:
This study investigated the asymmetric links and portfolio strategies between green bonds and the markets of three different cryptocurrencies, i.e., green, Islamic, and conventional, using data from January 1, 2018, to April 8, 2022, and employing asymmetric TVP-VAR model to quantify risk spillovers in the network analysis. In addition, we use the minimum variance, minimum correlation, and minimum connectedness methodologies to assess the portfolio implications. The results of the asymmetric dynamic connectedness index (TCI) model show that by adopting cryptocurrencies for digital finance, risk spillovers are found to be reduced. The findings of net directional connectedness demonstrate that during the study period, green bonds consistently get return spillovers from all other network variables. Positive return spillovers are bigger in magnitude than negative ones. These results imply that the influence of the green bond market on the cryptocurrency markets is decreasing. Positive return spillovers generate higher connectedness values for (HG, BNB, and TRX) coins and persistent net recipients in the specific network. On the other hand, Cardano and ADA coins are persistent net transmitters in the system. XLM and MIOTA's responsibilities shift over time, and there is evidence of asymmetry when both positive and negative returns are considered. According to the pairwise portfolio weights, BNB vs. BTC has the largest portfolio weights in the system, followed by BNB vs. Ethereum, suggesting the best investment strategies in the network.Keywords: asymmetric TVP-VAR, global sustainable index, cryptocurrency, portfolios
Procedia PDF Downloads 787192 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 2547191 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network
Authors: Manoj Kumar
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.Keywords: AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 5187190 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 1757189 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 1767188 Role of ICT and Wage Inequality in Organization
Authors: Shoji Katagiri
Abstract:
This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.Keywords: endogenous economic growth, ICT, inequality, capital accumulation
Procedia PDF Downloads 2607187 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4427186 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques
Authors: Ved Kulkarni, Karthik Kini
Abstract:
This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.Keywords: data mining, language processing, artificial neural networks, sentiment analysis
Procedia PDF Downloads 177185 Design of Circular Patch Antenna in Terahertz Band for Medical Applications
Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila
Abstract:
The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring
Procedia PDF Downloads 3077184 Cache Analysis and Software Optimizations for Faster on-Chip Network Simulations
Authors: Khyamling Parane, B. M. Prabhu Prasad, Basavaraj Talawar
Abstract:
Fast simulations are critical in reducing time to market in CMPs and SoCs. Several simulators have been used to evaluate the performance and power consumed by Network-on-Chips. Researchers and designers rely upon these simulators for design space exploration of NoC architectures. Our experiments show that simulating large NoC topologies take hours to several days for completion. To speed up the simulations, it is necessary to investigate and optimize the hotspots in simulator source code. Among several simulators available, we choose Booksim2.0, as it is being extensively used in the NoC community. In this paper, we analyze the cache and memory system behaviour of Booksim2.0 to accurately monitor input dependent performance bottlenecks. Our measurements show that cache and memory usage patterns vary widely based on the input parameters given to Booksim2.0. Based on these measurements, the cache configuration having least misses has been identified. To further reduce the cache misses, we use software optimization techniques such as removal of unused functions, loop interchanging and replacing post-increment operator with pre-increment operator for non-primitive data types. The cache misses were reduced by 18.52%, 5.34% and 3.91% by employing above technology respectively. We also employ thread parallelization and vectorization to improve the overall performance of Booksim2.0. The OpenMP programming model and SIMD are used for parallelizing and vectorizing the more time-consuming portions of Booksim2.0. Speedups of 2.93x and 3.97x were observed for the Mesh topology with 30 × 30 network size by employing thread parallelization and vectorization respectively.Keywords: cache behaviour, network-on-chip, performance profiling, vectorization
Procedia PDF Downloads 1977183 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1617182 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 427181 Semirings of Graphs: An Approach Towards the Algebra of Graphs
Authors: Gete Umbrey, Saifur Rahman
Abstract:
Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.Keywords: graphs, join and union of graphs, semiring, weighted graphs
Procedia PDF Downloads 1487180 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain
Procedia PDF Downloads 2917179 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey
Authors: Bi Zhao
Abstract:
Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.Keywords: Chinese undergraduates, machine translation, trust, usage
Procedia PDF Downloads 1397178 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 2127177 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts
Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter
Abstract:
Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings
Procedia PDF Downloads 122