Search results for: Glass Fiber Reinforced Plastic(GFRP)
717 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 306716 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 67715 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories
Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez
Abstract:
The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture
Procedia PDF Downloads 29714 Development of Latent Fingerprints on Non-Porous Surfaces Recovered from Fresh and Sea Water
Authors: A. Somaya Madkour, B. Abeer sheta, C. Fatma Badr El Dine, D. Yasser Elwakeel, E. Nermine AbdAllah
Abstract:
Criminal offenders have a fundamental goal not to leave any traces at the crime scene. Some may suppose that items recovered underwater will have no forensic value, therefore, they try to destroy the traces by throwing items in water. These traces are subjected to the destructive environmental effects. This can represent a challenge for Forensic experts investigating finger marks. Accordingly, the present study was conducted to determine the optimal method for latent fingerprints development on non-porous surfaces submerged in aquatic environments at different time interval. The two factors analyzed in this study were the nature of aquatic environment and length of submerged time. In addition, the quality of developed finger marks depending on the used method was also assessed. Therefore, latent fingerprints were deposited on metallic, plastic and glass objects and submerged in fresh or sea water for one, two, and ten days. After recovery, the items were subjected to cyanoacrylate fuming, black powder and small particle reagent processing and the prints were examined. Each print was evaluated according to fingerprint quality assessment scale. The present study demonstrated that the duration of submersion affects the quality of finger marks; the longer the duration, the worse the quality.The best results of visualization were achieved using cyanoacrylate either in fresh or sea water. This study has also revealed that the exposure to sea water had more destructive influence on the quality of detected finger marks.Keywords: fingerprints, fresh water, sea, non-porous
Procedia PDF Downloads 454713 Utilization of Composite Components for Land Vehicle Systems: A Review
Authors: Kivilcim Ersoy, Cansu Yazganarikan
Abstract:
In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.Keywords: land vehicle, composite, light-weight design, armored vehicle
Procedia PDF Downloads 464712 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites
Authors: Ki-Ho Nam, Haksoo Han
Abstract:
Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance
Procedia PDF Downloads 525711 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 230710 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter
Procedia PDF Downloads 392709 Effect of Silicon on Tritrophic Interaction of Cotton, Whitefly and Chrysoperla carnea
Authors: Asim Abbasi, Muhammad Sufyan
Abstract:
The present experiment was carried out to examine the effects of silicon dioxide on tritrophic interaction of cotton, whitefly, and the predator Chrysoperla carnea. Population of whitefly was maintained on silicon treated and non-treated cotton for two generations in greenhouse net cages exposed to outside temperature and luminosity. The cotton was treated with silicon dioxide twice after 15 days intervals with 200 ppm concentration. A stock rearing of the natural predator was developed in the laboratory conditions. In the bioassay eggs of the predator all at the same age were individualized in glass petri plates that will be pierced with a pin to allow aeration and maintained in an incubator at 28 ± 2°C, 70 ± 10% relative humidity and 12h photo phase. Population of whitefly stayed on silicon treated, and non-treated cotton were offered to newly hatched chrysopid larvae until the end of the larval stage, assuring a permanent supply. Feeding preference of C. carnea along with longevity, survival of each instar larvae, pupation, adult emergence, and fecundity was checked. The results revealed that there was no significant difference in the feeding preference of C. carnea among both treatments. Durations of 1st and 2nd larval instar were also at par in both treatments. However overall longevity and adult emergence were a bit lower in silicon treated whitefly treatment. This may be due to the fact that silicon reduces the nutritional quality of host because of reduced whitefly feeding on silicon treated cotton. No significant difference in 1st and 2nd larval instars and then increased larval duration in later instars suggested that the effect of silicon treated host should be checked on more than 1 generation of C. carnea to get better findings.Keywords: Chrysoperla carnea, silicon, tritrophic, whitefly
Procedia PDF Downloads 180708 Protein Quality of Game Meat Hunted in Latvia
Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna
Abstract:
Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.Keywords: dietic product, game meat, amino acids, scores
Procedia PDF Downloads 321707 High Toughening Effects of Polybenzoxazine Filled with Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Varied Monomers
Authors: A. Pattulee, I. Lawan, N. Boonnao, R. Gholami, P. Rimdusit, S. Rimdusit
Abstract:
Varied types and content of ultrafine vulcanized powdered natural rubbers (UFPNR) as toughening fillers of polybenzoxazine composite are investigated in this work. Four types of UFPNR were prepared by graft polymerization of acrylonitrile monomer (AN), styrene monomer (ST), styrene-acrylonitrile copolymer (ST/AN), and styrene-methyl methacrylate copolymer (ST/MMA) onto deproteinized natural rubber (DPNR). The solid UFPNR powders with different types of grafting were finally obtained by electron beam vulcanization and a spray-drying technique. Additionally, effects of various UFPNR contents (0, 5, 10, 15, 20, and 25 wt%) on toughness of polybenzoxazine composites were studied. It was observed that the UFPNR grafted with the styrene-methyl methacrylate copolymer (UFPNR-g-(PS-co-PMMA)) exhibited the most effective toughening agent for polybenzoxazine, whereas the rubber powder content of 25 wt% was found to be the optimal filler loading in enhancing the toughness of the resulting composite. The experimental results revealed an increase of 86% in toughness and 56% in impact strength at the above UFPNR-g- (PS-co-PMMA powdered rubber content. Interestingly, the utilization of the UFPNR-g-(PS-co-PMMA as toughening agent was found to increase thermal stability (degradation temperature at 5wt.% (Td5) and glass transition temperature (Tg) of the composite i.e. an increase of 8°C and 6 °C has been observed for the Td5 and Tg, respectively.Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polybenzoxazine, polymer composite, toughening
Procedia PDF Downloads 7706 Supplementation of Mannan Oligosaccharides in Guinea Pigs: Mortality and Growth Performance
Authors: C. Minguez, J. Bueso-Rodenas, C. Ibanez, A. Calvo
Abstract:
Mannan oligosaccharides (MOS) is one of the prebiotic most used in livestock nutrition. In this research, the effect of MOS dietary supplementation on growth performance and mortality in meat guinea pigs were studied. Three different experimental groups were compared: Control group (no additives); MOS 1 (1.5 g kg−1); MOS 2 (2 g kg−1). Guinea pigs were housed in 15 collective cages (n = 50 animals in each trial; 10 animals per cage). The young guinea pigs were weaning at day 28 and individually identified by a little ear tag. The fattening period was 49 days. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat) and alfalfa (Medicago sativa) as forage. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered. Contrasts between groups were obtained by calculated generalized least squares values. Mortality were evaluated by Fisher's exact test. Between MOS groups no significant differences were observed for growth traits and mortality. However, significant differences against the control group were observed for traits studied (pvalue < 0.05). In conclusion, the use of MOS could be a good prebiotic supplement to raise guinea pigs because it MOS has shown positive effects in growth traits and immune response in animals.Keywords: guinea pig, growth, mannan oligosaccharides, mortality
Procedia PDF Downloads 139705 Colonization of Embrionic Gonads of Nile Tilapia by Giant Gourami Testicular Germ Cells
Authors: Irma Andriani, Ita Djuwita, Komar Sumantadinata, Alimuddin
Abstract:
The recent study has been conducted to develop testicular germ cell transplantation as a tool for preservation and propagation of male germ-plasm from endangered fish species, as well as to produce surrogate broodstock of commercially valuable fish. Giant gourami testis had been used as a model for donor and Nile tilapia larvae as recipient. We developed testicular cell xenotransplantation by optimizing the timing of intraperitoneal cell transplantation to recipient larvae aged 1, 3, 5 and 7 days post hatching (dph). Freshly isolated testis of giant gourami weighing 600–800 g were minced in dissociation medium and then incubated for 3 hours in room temperature to collect monodisperce cell suspension. Donor cells labeled with PKH 26 were transplanted into the peritoneal cavity of Nile tilapia larvae using glass micropipettes. Parameters observed were survival rate of Nile tilapia larvae at 24 hours post transplantation (pt) and colonization efficiency of donor cells at 2 and 3 months pt. The incorporated donor cells were observed under fluorescent microscope. The result showed that the lowest survival rate at 24 hours pt was 1 dph larvae (82.74±6.76%) and the highest survival rate were 3 and 5 dph larvae (95.00±5.00% and 95.00±2.50%, respectively). The highest colonization efficiency was on 3 dph larvae (61.1±34.71%) and the lowest colonization efficiency was on 7 dph larvae (19.43±17.33%). In conclusion, 3 dph Nile tilapia larvae was the best recipient for giant gourami testicular germ cells xenotransplantation.Keywords: xenotransplantation, testicular germ cell, giant gourami, Nile tilapia, colonization efficiency
Procedia PDF Downloads 582704 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting
Procedia PDF Downloads 82703 Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium
Authors: Suresh Vidyasagar Chevuri, D. B. Karunakar Chevuri
Abstract:
The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed.Keywords: spark plasma sintering, 2024 AA, yttrium addition, microstructure characterization, mechanical properties
Procedia PDF Downloads 224702 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity
Authors: Muhammad Tariq A. Chaudhary
Abstract:
Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction
Procedia PDF Downloads 232701 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources
Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche
Abstract:
The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil
Procedia PDF Downloads 160700 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange
Authors: Abdul Qader Melhem, Hacene Badache
Abstract:
This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors
Procedia PDF Downloads 227699 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids
Authors: Muhammad Mazhar, Yong Zhu, Likang Qin
Abstract:
Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes
Procedia PDF Downloads 73698 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method
Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece
Abstract:
Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance
Procedia PDF Downloads 166697 Assessing the Role of Failed-ADR in Civil Litigation
Authors: Masood Ahmed
Abstract:
There is a plethora of literature (including judicial and extra-judicial comments) concerning the virtues of alternative dispute resolution processes within the English civil justice system. Lord Woolf in his Access to Justice Report ushered in a new pro-ADR philosophy and this was reinforced by Sir Rupert Jackson in his review of civil litigation costs. More recently, Briggs LJ, in his review of the Chancery Court, reiterated the significant role played by ADR and the need for better integration of ADR processes within the Chancery Court. His Lordship also noted that ADR which had failed to produce a settlement (i.e. a failed-ADR) continued to play a significant role in contributing to a ‘substantial narrowing of the issues or increased focus on the key issues’ which were ‘capable of assisting both the parties and the court in the economical determination of the dispute at trial.’ With the assistance of empirical data, this paper investigates the nature of failed-ADR and, in particular, assesses the effectiveness of failed-ADR processes as a tool in: (a) narrowing the legal and/or factual issues which may assist the courts in more effective and efficient case management of the dispute; (b) assisting the parties in the future settlement of the matter. This paper will also measure the effectiveness of failed-ADR by considering the views and experiences of legal practitioners who have engaged in failed-ADR.Keywords: English civil justice system, alternative dispute resolution processes, civil court process, empirical data from legal profession regarding failed ADR
Procedia PDF Downloads 465696 Antioxidant Potential, Nutritional Value and Sensory Profiles of Bread Fortified with Kenaf Leaves
Authors: Kar Lin Nyam, Phey Yee Lim
Abstract:
The aim of this study was to determine the antioxidant potential, nutritional composition, and functional properties of kenaf leaves powder. Besides, the effect of kenaf leaves powder in bread qualities, properties, and consumer acceptability were evaluated. Different formulations of bread fortified with 0%, 4% and 8% kenaf leaves powder, respectively were produced. Physical properties of bread, such as loaf volume, dough expansion, crumb colour, and bread texture, were determined. Nine points hedonic scale was utilized in sensory evaluation to determine the best formulation (the highest overall acceptability). Proximate composition, calcium content, and antioxidant properties were also determined for the best formulation. 4% leaves powder bread was the most preferred by the panelists followed by control bread, and the least preferred was being 8% leaves powder bread. 4% leaves powder bread had significantly higher value of DPPH radical scavenging capacity (8.05 mg TE/100g), total phenolic content (12.88 mg GAE/100g) and total flavonoid content (13.26 mg QE/100g) compared to control bread (1.38 mg TE/100g, 8.17 mg GAE/100g, and 8.77 mg QE/100g respectively). Besides, 4% leaves powder bread also showed higher in calcium content and total dietary fiber compared to control bread. Kenaf leaves powder is suitable to be used as a source of natural antioxidant for fortification and nutrient improver in bread.Keywords: dietary fibre, calcium, total phenolic content, total flavonoid content
Procedia PDF Downloads 126695 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed
Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera
Abstract:
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.Keywords: zinc oxide, chemical spray, thin films, TCO
Procedia PDF Downloads 503694 Hydrothermal Synthesis of Hydrosodalite by Using Ultrasounds
Authors: B. Białecka, Z. Adamczyk, M. Cempa
Abstract:
The use of ultrasounds in zeolization of fly ash can increase the efficiency of this process. The molar ratios of the reagents, as well as the time and temperature of the synthesis, are the main parameters determining the type and properties of the zeolite formed. The aim of the work was to create hydrosodalite in a short time (8h), with low NaOH concentration (3 M) and in low temperature (80°C). A zeolite material contained in fly ash from hard coal combustion in one of Polish Power Plant was subjected to hydrothermal alkaline synthesis. The phase composition of the ash consisted mainly of glass, mullite, quartz, and hematite. The dominant chemical components of the ash were SiO₂ (over 50%mas.) and Al₂O₃ (more than 28%mas.), whereas the contents of the remaining components, except Fe₂O₃ (6.34%mas.), did not exceed 4% mas. The hydrothermal synthesis of the zeolite material was carried out in the following conditions: 3M-solution of NaOH, synthesis time – 8 hours, 40 kHz-frequency ultrasounds during the first two hours of synthesis. The mineral components of the input ash as well as product after synthesis were identified in microscopic observations, in transmitted light, using X-ray diffraction (XRD) and electron scanning microscopy (SEM/EDS). The chemical composition of the input ash was identified by the method of X-ray fluorescence (XRF). The obtained material apart from phases found in the initial fly ash sample, also contained new phases, i.e., hydrosodalite and NaP-type zeolite. The chemical composition in micro areas of grains indicated their diversity: i) SiO₂ content was in the range 30-59%mas., ii) Al₂O₃ content was in the range 24-35%mas., iii) Na₂O content was in the range 6-15%mas. This clearly indicates that hydrosodalite forms hypertrophies with NaP type zeolite as well as relict grains of fly ash. A small amount of potassium in the examined grains is noteworthy, which may indicate the substitution of sodium with potassium. This is confirmed by the high value of the correlation coefficient between these two components.Keywords: fly ash, hydrosodalite, ultrasounds, zeolite
Procedia PDF Downloads 152693 The Evaluation of Antioxidant Activity of Aloe Vera (Aloe barbadensis miller)
Authors: R. A. Akande, M. L. Mnisi
Abstract:
Introduction: Aloe vera (Aloe barbadensis miller) flowers are carried in a large candelabra-like flower-head. Aloe barbadensis miller has been known as a traditional herbal medicine for the treatment of many diseases and sicknesses mainly for skin conditions such as sunburns, cold sores and frostbite. It is also used as a fresh food preservative. The main objective of this study is to determine the antioxidant activity of Aloe barbadensis miller. Methodology: The plant material (3g) was separately extracted with 30 mL of solvent with varying polarities (methanol and ethyl acetate)(technical grade, Merck) in 50ml polyester centrifuge tubes. The tubes was be shaken for 30 minutes on a linear shaker and left over night. The supernatant was filtered using a Whitman No. 1 filter paper before being transferred into pre-weighed glass containers. The solvent was allowed to evaporate under a fan in a room to quantify extraction efficacy. The, tin layer chromatography(TLC) plates were prepared and Pasteur pipette was used for spotting each extractant (methanol and ethyl acetate) on the TLC plates and the plate was developed in saturated TLC tank .and dipped in vanillin sulphuric acid mixture and heated at 110 to detect separate compound .and dipped in DDPH in methanol to detect antioxidant. Expected contribution to knowledge: It was observed that different compounds which interact differently with different solvent such as methanol, ethyl acetate having difference polarities were observed. The yellow spots also observed from the plate dipped in DDPH indicate that Aloe barbadensis miller has antioxidant.Keywords: antioxidant activity, Aloe barbadensis miller, tin layer chromatography, DDPH
Procedia PDF Downloads 447692 Approaching In vivo Dosimetry for Kilovoltage X-Ray Radiotherapy
Authors: Rodolfo Alfonso, David Alonso, Albin Garcia, Jose Luis Alonso
Abstract:
Recently a new kilovoltage radiotherapy unit model Xstrahl 200 - donated to the INOR´s Department of Radiotherapy (DR-INOR) in the framework of a IAEA's technical cooperation project- has been commissioned. This unit is able to treat shallow and low deep laying lesions, as it provides 8 discrete beam qualities, from 40 to 200 kV. As part of the patient-specific quality assurance program established at DR-INOR for external beam radiotherapy, it has been recommended to implement in vivo dose measurements (IVD), as they allow effectively discovering eventual errors or failures in the radiotherapy process. For that purpose a radio-photoluminescence (RPL) dosimetry system, model XXX, -also donated to DR-INOR by the same IAEA project- has been studied and commissioned. Main dosimetric parameters of the RPL system, such as reproducibility, linearity, and filed size influence were assessed. In a similar way, the response of radiochromic EBT3 type film was investigated for purposes of IVD. Both systems were calibrated in terms of entrance surface dose. Results of the dosimetric commissioning of RPL and EBT3 for IVD, and their pre-clinical implementation through end-to-end test cases are presented. The RPL dosimetry seems more recommendable for hyper-fractionated schemes with larger fields and curved patient contours, as those in chest wall irradiations, where the use of more than one dosimeter could be required. The radiochromic system involves smaller corrections with field size, but it sensibility is lower; hence it is more adequate for hypo-fractionated treatments with smaller fields.Keywords: glass dosimetry, in vivo dosimetry, kilovotage radiotherapy, radiochromic dosimetry
Procedia PDF Downloads 398691 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures
Authors: Gautam, Arjun, V. R. Sharma
Abstract:
In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures
Procedia PDF Downloads 384690 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)
Procedia PDF Downloads 154689 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia
Authors: Tejeet Singh, Virat Khanna
Abstract:
Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.Keywords: composite, creep, rotating cylinder, angular speed
Procedia PDF Downloads 445688 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
Authors: Mahya Naghipoor
Abstract:
Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.Keywords: lung cancer, radiomics, computer tomography, mutation
Procedia PDF Downloads 167