Search results for: web-based learning systems
13418 The Development of Online Lessons in Integration Model
Authors: Chalermpol Tapsai
Abstract:
The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.Keywords: integration model, online lessons, learners’ background knowledge, efficiency
Procedia PDF Downloads 35913417 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 25313416 A Flipped Learning Experience in an Introductory Course of Information and Communication Technology in Two Bachelor's Degrees: Combining the Best of Online and Face-to-Face Teaching
Authors: Begona del Pino, Beatriz Prieto, Alberto Prieto
Abstract:
Two opposite approaches to teaching can be considered: in-class learning (teacher-oriented) versus virtual learning (student-oriented). The most known example of the latter is Massive Online Open Courses (MOOCs). Both methodologies have pros and cons. Nowadays there is an increasing trend towards combining both of them. Blending learning is considered a valuable tool for improving learning since it combines student-centred interactive e-learning and face to face instruction. The aim of this contribution is to exchange and share the experience and research results of a blended-learning project that took place in the University of Granada (Spain). The research objective was to prove how combining didactic resources of a MOOC with in-class teaching, interacting directly with students, can substantially improve academic results, as well as student acceptance. The proposed methodology is based on the use of flipped learning technics applied to the subject ‘Fundamentals of Computer Science’ of the first course of two degrees: Telecommunications Engineering, and Industrial Electronics. In this proposal, students acquire the theoretical knowledges at home through a MOOC platform, where they watch video-lectures, do self-evaluation tests, and use other academic multimedia online resources. Afterwards, they have to attend to in-class teaching where they do other activities in order to interact with teachers and the rest of students (discussing of the videos, solving of doubts and practical exercises, etc.), trying to overcome the disadvantages of self-regulated learning. The results are obtained through the grades of the students and their assessment of the blended experience, based on an opinion survey conducted at the end of the course. The major findings of the study are the following: The percentage of students passing the subject has grown from 53% (average from 2011 to 2014 using traditional learning methodology) to 76% (average from 2015 to 2018 using blended methodology). The average grade has improved from 5.20±1.99 to 6.38±1.66. The results of the opinion survey indicate that most students preferred blended methodology to traditional approaches, and positively valued both courses. In fact, 69% of students felt ‘quite’ or ‘very’ satisfied with the classroom activities; 65% of students preferred the flipped classroom methodology to traditional in-class lectures, and finally, 79% said they were ‘quite’ or ‘very’ satisfied with the course in general. The main conclusions of the experience are the improvement in academic results, as well as the highly satisfactory assessments obtained in the opinion surveys. The results confirm the huge potential of combining MOOCs in formal undergraduate studies with on-campus learning activities. Nevertheless, the results in terms of students’ participation and follow-up have a wide margin for improvement. The method is highly demanding for both students and teachers. As a recommendation, students must perform the assigned tasks with perseverance, every week, in order to take advantage of the face-to-face classes. This perseverance is precisely what needs to be promoted among students because it clearly brings about an improvement in learning.Keywords: blended learning, educational paradigm, flipped classroom, flipped learning technologies, lessons learned, massive online open course, MOOC, teacher roles through technology
Procedia PDF Downloads 18013415 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques
Authors: Pranjali Avinash Yadav-Deshmukh
Abstract:
Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction
Procedia PDF Downloads 38613414 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.Keywords: education, methodological system, the teaching of mathematics, students motivation
Procedia PDF Downloads 35413413 An Interrogation of Lecturer’s Skills in Assisting Visually Impaired Students during the COVID-19 Lockdown Era in Selected Universities in Zimbabwe
Authors: Esther Mafunda
Abstract:
The present study interrogated the lecturer’s skills in supporting visually impaired students during the Covid-19 era at the University of Zimbabwe. It particularly assesses how the Covid-19 pandemic affected the learning experience of visually impaired students and which skills the lecturers possessed in order to assist the visually impaired students during online learning. Data was collected from lecturers and visually impaired students at the University of Zimbabwe Disability Resource Centre. Data was collected through the use of interviews and questionnaires. Using content analysis, it was established that visually impaired students faced challenges of lack of familiarity with the Moodle learning platform, marginalization, lack of professional training, and lack of training for parents and guardians. Lecturers faced challenges of lack of training, the curriculum, access, and technical know-how deficit. It was established that lecturers had to resort to social media platforms in order to assist visually impaired students. Visually impaired students also received assistance from their friends and family members. On the basis of the results of the research, it can be concluded that lecturers needed in-service training to be provided with the necessary skills and knowledge to teach students with visual impairments and provide quality education to students with visual impairments.Keywords: visual impairment, disability, covid-19, inclusive learning
Procedia PDF Downloads 9213412 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid
Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani
Abstract:
As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.Keywords: computational grid, job scheduling, learning automata, dynamic scheduling
Procedia PDF Downloads 34313411 Ecological Art in the Nuclear Anthropocene
Authors: Eve-Andree Laramee
Abstract:
The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.Keywords: art, ecology, environment, anthropocene, nuclear
Procedia PDF Downloads 22913410 From Teaching Methods to Learning Styles: Toward Humanizing Education and Building Rapport with Students at Sultan Qaboos University
Authors: Mounir Ben Zid
Abstract:
The controversy over the most effective teaching method to facilitate the increase of a student's knowledge has remained a frustration for poetry teachers at Sultan Qaboos University in Oman for the last ten years. Scholars and educationists have pursued answers to this question, and tremendous effort has been marshalled to discover the optimum teaching strategy, with little success. The present study stems from this perpetual frustration among teachers of poetry and the dispute about the repertoire of teaching methods. It attempts to shed light on an alternative direction which, it is believed, has received less scholarly attention than deserved. It emphasizes the need to create a democratic and human atmosphere of learning, arouses students' genuine interest, provides students with aesthetic pleasure, and enable them to appreciate and enjoy the beauty and musicality of words in poems. More important, this teaching-learning style should aim to secure rapport with students, invite teachers to inspire the passion and love of poetry in their students and help them not to lose the sense of wonder and enthusiasm that should be in the forefront of enjoying poetry. Hence, it is the need of the time that, after they have an interest, feeling and desire for poetry, university students can move to heavier tasks and discussions about poetry and how to further understand and analyze what is being portrayed. It is timely that the pendulum swung in support of the humanization of education and building rapport with students at Sultan Qaboos University.Keywords: education, humanization, learning style, Rapport
Procedia PDF Downloads 24513409 Including All Citizens Pathway (IACP): Transforming Post-Secondary Education Using Inclusion and Accessibility as Foundation
Authors: Fiona Whittington-Walsh
Abstract:
Including All Citizens Pathway (IACP) is addressing the systems wide discrimination that students with disabilities experience throughout the education system. IACP offers a wide, institutional support structure so that all students, including students with intellectual/developmental disabilities, are included and can succeed. The entire process from admissions, course selection, course instruction, graduation is designed to address systemic discrimination while supporting learners and faculty. The inclusive and accessible pedagogical model that is the foundation of IACP opens the doors of post-secondary education by making existing academic courses environments where all students can participate and succeed. IACP is about transforming teaching, not modifying, or adapting the curriculum or essential knowledge and skill sets that are required learning outcomes. Universal Design for Learning (UDL) principles are applied to instructional teaching strategies such as lectures, presentations, and assessment tools. Created in 2016 as a research pilot, IACP is one of the first fully inclusive for credit post-secondary options available. The pilot received numerous external and internal grants to support its initiative to investigate and assess the teaching strategies and techniques that support student learning of essential knowledge and skill sets. IACP pilot goals included: (1) provide a successful pilot as a model of inclusive and accessible pedagogy; (2) create a teacher’s guide to assist other instructors in transforming their teaching to reach a wide range of learners; (3) identify policy barriers located within the educational system; and (4) provide leadership and encouraging innovative and inclusive pedagogical practices. The pilot was a success and in 2020 the first cohort of students graduated with an exit credential that pre-exists IACP and consists of ten academic courses. The University has committed to continue IACP and has developed a sustainable model. Each new academic year a new cohort of IACP students starts their post-secondary educational journey, while two additional instructors are mentored with the pedagogy. The pedagogical foundation of IACP has far-reaching potential including, but not limited to, programs that offer services for international students whose first language is not English as well as influencing pedagogical reform in secondary and post-secondary education. IACP also supports universities in satisfying educational standards that are or will be included in accessibility/disability legislation. This session will present information about IACP, share examples of systems transformation, hear from students and instructors, and provide participatory experiential activities that demonstrate the transformative techniques. We will be drawing from the experiences of a recent course that explored research documenting the lived experiences of students with disabilities in post-secondary institutes in B.C (Whittington-Walsh). Students created theatrical scenes out of the data and presented it using Forum Theatre method. Forum Theatre was used to create conversations, challenge stereotypes, and build connections between ableism, disability justice, Indigeneity, and social policy.Keywords: disability justice, inclusive education, pedagogical transformation, systems transformation
Procedia PDF Downloads 813408 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 11613407 Reimagining the Learning Management System as a “Third” Space
Authors: Christina Van Wingerden
Abstract:
This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.Keywords: COVID-19, isolation, learning management system, sense of belonging
Procedia PDF Downloads 11213406 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom
Authors: Liza Mariah Hj. Azahari
Abstract:
This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.Keywords: English camp, UNISSA, interactive learning, outside
Procedia PDF Downloads 56913405 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement
Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla
Abstract:
Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator
Procedia PDF Downloads 29613404 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 17913403 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14313402 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.Keywords: disaster management, real-time demand, reinforcement learning, relief demand
Procedia PDF Downloads 31613401 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 35713400 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 12313399 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14713398 Ecological Systems Theory, the SCERTS Model, and the Autism Spectrum, Node and Nexus
Authors: C. Surmei
Abstract:
Autism Spectrum Disorder (ASD) is a complex developmental disorder that can affect an individual’s (but is not limited to) cognitive development, emotional development, language acquisition and the capability to relate to others. Ecological Systems Theory is a sociocultural theory that focuses on environmental systems with which an individual interacts. The SCERTS Model is an educational approach and multidisciplinary framework that addresses the challenges confronted by individuals on the autism spectrum and other developmental disabilities. To aid the understanding of ASD and educational philosophies for families, educators, and the global community alike, a Comparative Analysis was undertaken to examine key variables (the child, society, education, nurture/care, relationships, communication). The results indicated that the Ecological Systems Theory and the SCERTS Model were comparable in focus, motivation, and application, attaining to a viable and notable relationship between both theories. This paper unpacks two child development philosophies and their relationship to each other.Keywords: autism spectrum disorder, ecological systems theory, education, SCERTS model
Procedia PDF Downloads 58813397 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor
Procedia PDF Downloads 43913396 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas
Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek
Abstract:
Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.Keywords: continuous measurement, flue gas, mercury determination, speciation
Procedia PDF Downloads 19613395 A Systems-Level Approach towards Transition to Electrical Vehicles
Authors: Mayuri Roy Choudhury, Deepti Paul
Abstract:
Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.Keywords: transition, electrical vehicles, systems-level, algorithms
Procedia PDF Downloads 22813394 Massive Open Online Course about Content Language Integrated Learning: A Methodological Approach for Content Language Integrated Learning Teachers
Authors: M. Zezou
Abstract:
This paper focuses on the design of a Massive Open Online Course (MOOC) about Content Language Integrated Learning (CLIL) and more specifically about how teachers can use CLIL as an educational approach incorporating technology in their teaching as well. All the four weeks of the MOOC will be presented and a step-by-step analysis of each lesson will be offered. Additionally, the paper includes detailed lesson plans about CLIL lessons with proposed CLIL activities and games in which technology plays a central part. The MOOC is structured based on certain criteria, in order to ensure success, as well as a positive experience that the learners need to have after completing this MOOC. It addresses to all language teachers who would like to implement CLIL into their teaching. In other words, it presents the methodology that needs to be followed so as to successfully carry out a CLIL lesson and achieve the learning objectives set at the beginning of the course. Firstly, in this paper, it is very important to give the definitions of MOOCs and LMOOCs, as well as to explore the difference between a structure-based MOOC (xMOOC) and a connectivist MOOC (cMOOC) and present the criteria of a successful MOOC. Moreover, the notion of CLIL will be explored, as it is necessary to fully understand this concept before moving on to the design of the MOOC. Onwards, the four weeks of the MOOC will be introduced as well as lesson plans will be presented: The type of the activities, the aims of each activity and the methodology that teachers have to follow. Emphasis will be placed on the role of technology in foreign language learning and on the ways in which we can involve technology in teaching a foreign language. Final remarks will be made and a summary of the main points will be offered at the end.Keywords: CLIL, cMOOC, lesson plan, LMOOC, MOOC criteria, MOOC, technology, xMOOC
Procedia PDF Downloads 19413393 Exploring the Effectiveness and Challenges of Implementing Self-Regulated Learning to Improve Spoken English
Authors: Md. Shaiful Islam, Mahani Bt. Stapa
Abstract:
To help learners overcome their struggle in developing proficiency in spoken English, self-regulated learning strategies seem to be promising. Students in the private universities in Bangladesh are expected to communicate with the teachers, peers, and staff members in English, but most of them suffer from their inadequate oral communicative competence in English. To address this problem, the researchers adopted a qualitative research approach to answer the research questions. They employed the learner diary method to collect data from the first-semester undergraduate students of a reputed private university in Bangladesh who were involved in writing weekly diaries about their use of self-regulated learning strategies to improve speaking in an English speaking course. The learners were provided with prompts for writing the diaries. The thematic analysis method was applied to analyze the entries of the diaries for the identification of themes. Seven strategies related to the effectiveness of SRL for the improvement of spoken English were identified from the data, and they include goal-setting, strategic planning, identifying the sources of self-motivation, help-seeking, environmental restructuring, self-monitoring, and self-evaluation. However, the students reported in their diaries that they faced challenges that impeded their SRL strategy use. Five challenges were identified, and they entail the complex nature of SRL, lack of literacy on SRL, teachers’ preference for controlling the class, learners’ past habit of learning, and students’ addiction to gadgets. The implications the study addresses include revising the syllabus and curriculum, facilitating SRL training for students and teachers, and integrating SRL in the lessons.Keywords: private university in Bangladesh, proficiency, self-regulated learning, spoken English
Procedia PDF Downloads 16013392 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English
Authors: Ghazi Alotaibi
Abstract:
The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment
Procedia PDF Downloads 45613391 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 14913390 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning
Authors: Thomas James Bell III
Abstract:
Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education
Procedia PDF Downloads 14213389 Two-Way Reminder Systems to Support Activities of Daily Living for Adults with Cognitive Impairments: A Scoping Review
Authors: Julia Brudzinski, Ashley Croswell, Jade Mardin, Hannah Shilling, Jennifer Berg-Carnegie
Abstract:
Adults with brain injuries and mental illnesses commonly experience cognitive impairments that interfere with their participation in activities of daily living (ADLs). Prior research states that electronic reminder systems can support adults with cognitive impairments; however, previous studies focus primarily on one-way reminder systems. Research on adults with chronic diseases reported that two-way reminder systems yield better health outcomes and disease self-management compared to one-way reminder systems. Literature was identified through systematically searching 7 databases and hand-searching relevant reference lists. Retrieved studies were independently screened and reviewed by at least two members of the research team. Data was extracted on study design, participant characteristics, intervention details, study objectives, outcome measures, and important results. 574 articles were screened and reviewed. Nine articles met all inclusion criteria and were included. The literature focused on three main areas: system feasibility (n=8), stakeholder satisfaction (n=6), and efficacy of the two-way reminder systems (n=6). Participants in eight of the studies had brain injuries, with participants in only one study having a mental illness (i.e., schizophrenia). Two-way reminder systems were used to support participation in a wide range of ADLs. The current literature on two-way reminder systems to support ADLs for adults with cognitive impairments focuses on feasibility, stakeholder satisfaction, and system efficacy. Future research should focus on addressing the barriers to accessing and implementing two-way reminder systems and identifying specific client characteristics that would benefit most from using these systems.Keywords: brain injury, digital health, occupational therapy, activities of daily living, two-way reminder systems
Procedia PDF Downloads 74