Search results for: translator training
1765 Technical Efficiency and Challenges of Smallholder Horticultural Farmers in Ghana: A Wake-Up Call for Policy Implementers
Authors: Freda E. Asem, R. D. Osei, D. B. Sarpong, J. K. Kuwornu
Abstract:
While market access remains important, Ghana’s major handicap is her inability to sustain export growth on the open market. The causes of these could be attributed to inefficiency, lack of competitiveness and supply-side constraints. This study examined the challenges faced by smallholder horticultural farmers and how it relates to their technical efficiency. The study employed mixed methods to address the problem. Using the Millennium Development Account (MiDA) Farmer Based Organization survey data on farm households in 23 districts in Ghana, the study assessed the technical efficiency of smallholder horticultural farmers (taking into account production risks). Focus group discussions (FGDs) and in-depth interviews were also conducted on smallholder mango, pineapple, and chilli pepper farmers selected districts in Ghana. Results revealed the constraints faced by smallholder horticultural farmers to be marketing, training, funding, accessibility, and affordability of inputs, land, access to credit, and the disconnect between themselves and policy makers and implementers.Keywords: productivity, gender, policy, efficiency, constraints
Procedia PDF Downloads 4821764 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 1011763 The Willingness and Action of Engineering Students in Career Choice: A Mixed-Method Research from the Perspective of the Rational Choice Theory
Authors: Juan Wang, Xiuxiu Wang, Di Wang
Abstract:
Engineers are an important force supporting the economic and social development of a country. As China has the largest scale of engineering education in the world, the career choice of engineering students will affect the contribution of human capital to national scientific and technological progress and economic development. A questionnaire survey shows the following: on the whole, the students surveyed were willing to engage in an engineering career, but their willingness needed to be enhanced, and their willingness was affected by such factors as their understanding of the value of the engineering career; the resources from individual benefits, resources from career and individual strengths. Also, based on in-depth interviews with some engineering students, it is found that engineering students’ career choice behaviors totally based on survival rationality, economic rationality, social rationality and other combinations. Based on this, policy support should be given to the enrollment, training, employment and other aspects of engineering education; improve the professional status and treatment of engineers through multiple measures; ensure a smooth career path to enhance the willingness of engineering students to choose careers.Keywords: engineering students, career choice, engineer, human capital
Procedia PDF Downloads 61762 Assessment of Women Involvement in Fishing Activities: A Case Study of Epe and Ibeju Lekki LGA, Lagos
Authors: Temitope Adewale, Oladapo Raji
Abstract:
The study was designed to investigate the assessment of women's involvement in fishing. In order to give the study a direction, five research questions, as well as two hypotheses, were postulated, and a total of fifty (50) respondents each were selected from two local government areas for the study. This brings a total of one hundred (100) respondents selected from these local government areas in Lagos state. The outcome of the finding indicates that the percentage of the respondents’ age, 49% was between 31 and 35 years, 56% has a working experience of 6-10 years, 61% were married, 69% had secondary education as their educational level. However, findings show that socio-economic characteristics (x2 =15.504, df=6, p < 0.05) and income (r=0.83, p < 0.05) have a significant relationship on the fishing. It was established that the Women in Fish production/processing were faced with a lot of constraints such as high cost of inputs, inadequate electricity supply, lack of adequate capital, non-availability of the improved oven, non-availability of extension agents, inadequate fish landing, lack of transportation facilities, lack of training on financial management and loan acquisition which affected the level of output of women in Fish processing adversely.Keywords: women, fishing, agriculture, Lagos
Procedia PDF Downloads 1411761 Enriching Interaction in the Classroom Based on Typologies of Experiments and Mathematization in Physics Teaching
Authors: Olga Castiblanco, Diego Vizcaíno
Abstract:
Changing the traditional way of using experimentation in science teaching is quite a challenge. This research results talk about the characterization of physics experiments, not because of the topic it deals with, nor depending on the material used in the assemblies, but related to the possibilities it offers to enrich interaction in the classroom and thereby contribute to the development of scientific thinking skills. It is an action-research of type intervention in the classroom, with four courses of Physics Teaching undergraduate students from a public university in Bogotá. This process allows characterizing typologies such as discrepant, homemade, illustrative, research, recreational, crucial, mental, and virtual experiments. Students' production and researchers' reports on each class were the most relevant data. Content analysis techniques let to categorize the information and obtain results on the richness that each typology of experiment offers when interacting in the classroom. Results show changes in the comprehension of new teachers' role, far from being the possessor and transmitter of the truth. Besides, they understand strategies to engage students effectively since the class advances extending ideas, reflections, debates, and questions, either towards themselves, their classmates, or the teacher.Keywords: physics teacher training, non-traditional experimentation, contextualized education, didactics of physics
Procedia PDF Downloads 951760 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 621759 New Chances of Reforming Pedagogical Approach In Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform
Authors: Yue Wang
Abstract:
Five years passed since the newest English curriculum reform policy was published in China, hand-wringing spread among teachers who accused that this is another 'Wearing New Shoes to Walk the Old Road' policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and reveals the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times, and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctant from students, the lack of school and education bureau support, and insufficient teacher training. A further discussion of 2017 to 2020’s NCEE reform on English prompt new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform
Procedia PDF Downloads 1391758 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1631757 The Importance of Artificial Intelligence on Arts and Design
Authors: Mariam Adel Hakim Fouad
Abstract:
This quantitative examine investigates innovative arts teachers' perceptions regarding the implementation of an Inclusive innovative Arts curriculum. The study employs a descriptive method utilizing a 5-point Likert scale questionnaire comprising 15 objects to acquire data from innovative arts educators. The Census, with a disproportionate stratified sampling approach, became utilized to pick out 226 teachers from five academic circuits (Circuit A, B, C, D & E) within Offinso Municipality, Ghana. The findings suggest that most innovative arts instructors maintain a wonderful belief in enforcing an inclusive, innovative arts curriculum. Wonderful perceptions and attitudes amongst teachers are correlated with improved scholar engagement and participation in class sports. This has a look at recommends organizing workshops and in-carrier schooling periods centered on inclusive innovative arts schooling for creative Arts instructors. Moreover, it shows that colleges of education and universities accountable for trainer schooling integrate foundational guides in creative arts and special schooling into their number one schooling teacher training packages.Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapiesarts, cultural heritage, digitalization, ICTarts, design, font, identity
Procedia PDF Downloads 211756 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 51755 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1451754 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2601753 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides
Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney
Abstract:
Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis
Procedia PDF Downloads 3251752 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2401751 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 241750 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 541749 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1621748 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 721747 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5011746 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis
Authors: Pornpimol Chaiwuttisak
Abstract:
The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.Keywords: DEA, wholesales and retails, logistics, Thailand
Procedia PDF Downloads 4141745 A Study on the Effect of the Mindfulness and Cultivation of Wisdom as an Intervention Strategy for College Student Internet Addiction
Authors: P. C. Li, R. H. Feng, S. J. Chen, Y. J. Yu, Y. L. Chen, X. Y. Fan
Abstract:
The purpose of this study is to investigate the effect of mindfulness and wisdom comprehensive strategy intervention on addiction to the Internet of college students by engaging fourteen intensive full-day mindfulness-based wisdom retreat curriculum. Wisdom, one of the practice method from the threefold training. Internet addiction, a kind of impulse control disorder, which attract the attentions of society due to its high prevalence and harmfulness in the last decade. Therefore, the study of internet addiction intervention is urgent. Participants with internet addiction were Chinese college students and screened by internet addiction disorder diagnose questionnaire (IAD-DQ). A quasi-experimental pretest and posttest design was used as research design. The finding shows that the mindfulness-based wisdom intervention strategy appeared to be effective in reducing the Internet addiction. Moreover, semi-structure interview method was conducted and outcomes included five themes: the reduction of internet use, the increment of awareness on emotion, self-control, present concentration and better positive lifestyle, indicating that mindfulness could be an effective intervention for this group with internet addiction.Keywords: mindfulness, internet addiction, wisdom comprehensive intervention, cognitive-behavior therapy
Procedia PDF Downloads 1821744 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1431743 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change
Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon
Abstract:
Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands
Procedia PDF Downloads 2081742 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City
Authors: Jasper C. Dioco
Abstract:
The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers
Procedia PDF Downloads 1901741 Teaching English to Students with Hearing Impairments - A Preliminary Study
Authors: Jane O`Halloran
Abstract:
This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.Keywords: inclusive learning, special needs, hearing impairments, teaching strategies
Procedia PDF Downloads 1311740 Exploring the Meaning of Safety in Acute Mental Health Inpatient Units from the Consumer Perspective
Authors: Natalie Cutler, Lorna Moxham, Moira Stephens
Abstract:
Safety is a priority in mental health services, and no more so than in the acute inpatient setting. Mental health service policies and accreditation frameworks commonly approach safety from a risk reduction or elimination perspective leading to service approaches that are arguably more focused on risk than on safety. An exploration what safety means for people who have experienced admission to an acute mental health inpatient unit is currently under way in Sydney, Australia. Using a phenomenographic research approach, this study is seeking to understand the meaning of safety from the perspective of people who use, rather than those who deliver mental health services. Preliminary findings suggest that the meanings of safety for users of mental health services vary from the meanings inherent in the policies and frameworks that inform how mental health services and mental health practice are delivered. This variance has implications for the physical and environmental design of acute mental health inpatient facilities, the policies and practices, and the education and training of mental health staff in particular nurses, who comprise the majority of the mental health workforce. These variances will be presented, along with their implications for the way quality and safety in mental health services are evaluated.Keywords: acute inpatient, mental health, nursing, phenomenography, recovery, safety
Procedia PDF Downloads 2311739 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility
Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi
Abstract:
Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.Keywords: balance, core strength, flexibility, Paslop
Procedia PDF Downloads 3791738 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 5341737 Understanding Post-Displacement Earnings Losses: The Role of Wealth Inequality
Authors: M. Bartal
Abstract:
A large empirical evidence points to sizable lifetime earnings losses associated with the displacement of tenured workers. The causes of these losses are still not well-understood. Existing explanations are heavily based on human capital depreciation during non-employment spells. In this paper, a new avenue is explored. Evidence on the role of household liquidity constraints in accounting for the persistence of post-displacement earning losses is provided based on SIPP data. Then, a directed search and matching model with endogenous human capital and wealth accumulation is introduced. The model is computationally tractable thanks to its block-recursive structure and highlights a non-trivial, yet intuitive, interaction between wealth and human capital. Constrained workers tend to accept jobs with low firm-sponsored training because the latter are (endogenously) easier to find. This new channel provides a plausible explanation for why young (highly constrained) workers suffer persistent scars after displacement. Finally, the model is calibrated on US data to show that the interplay between wealth and human capital is crucial to replicate the observed lifecycle pattern of earning losses. JEL— E21, E24, J24, J63.Keywords: directed search, human capital accumulation, job displacement, wealth accumulation
Procedia PDF Downloads 2061736 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria
Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje
Abstract:
This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.Keywords: academic libraries, computers in library, digital libraries, public computers
Procedia PDF Downloads 351