Search results for: ring deep beam
1199 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 771198 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke
Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan
Abstract:
The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.Keywords: ellagic acid, lung, rat, tobacco smoke
Procedia PDF Downloads 2141197 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 931196 Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria
Authors: Olu Ale, Olugbenga Aribisala, Sanmi Awopetu
Abstract:
Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested.Keywords: bacteriological, physicochemical, quality, wells, Ado Ekiti
Procedia PDF Downloads 3681195 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 3161194 Logic and Arabic Grammar Debates at Medieval Ages: A Quest for Muslim Contributions to Philosophical Development
Authors: Umar Sheikh Tahir
Abstract:
This paper focuses on the historiography of the relationship between Logic and Arabic grammar in the Muslim Medieval Ages (a period between 750 and 1100/ 150 and 500 Ah). This sensation appears in the famous debate among many others between grammarians represented by abū Sa'id al-Sairafī and logicians represented by abū Bishr Mattā on Logic and its validity. This incident took place in Baghdad around 932 AD. However, this study singlehandedly samples these debates as the base for the contributions of Islamic philosophers to philosophy of language as well as Epistemology. The question that shapes this research is: What is the intellectual development for Muslim thinkers to philosophy of language in regards to this debate? The current research addresses the Arabic grammar and logical debates by conducting historiography to emphasize on Islamic philosophers’ concerns about this issue. Consequently, this debate generates philosophical phenomena and resolutions in deep-thinking. In addition, these dialogues create a language impression for Philosophy in Islamic world from the period under study. Thereupon, Islamic philosophers’ discourse on this phenomenon serves as contribution to the Philosophy of Language.Keywords: debates, epistemology, grammar and grammarians, Islamic philosophy, philosophy language, logic
Procedia PDF Downloads 2241193 Investigating the Correlation Between Customer Satisfaction Components and Reaching Competitive Advantage, Using SEM Approach
Authors: Samaneh Pouyanfar, Michael Oliff
Abstract:
Nowadays, customer satisfaction and discovering the superior services, are counted as vital issues in most manufacturing and services companies. In these terms, gaining the competitive advantage by a business depends on products and services which are able to cause the customer satisfaction. Given the importance of this subject, this paper tries to investigate the correlation between components of customer satisfaction and gaining the competitive advantage by the business. For this purpose, after reviewing the research literature and doing deep interviews with authors and active people in the industry, based on the variables affecting the customer satisfaction and determinant components of business competitive advantage, research questionnaire was prepared. In sum, 96 executives of PARS-KHAZAR Company were asked in a survey. The results of P.L.S. Test for the research structure analysis showed that the measuring tools in terms of technical features, like convergent and divergent validity and compound reliability were very appropriate. Moreover the results showed that, the structure of products and factors related to foundation, has affected the competitive advantage performance positively and significantly; but the influence of structure of services and business environment on competitive advantage was not confirmed.Keywords: customer satisfaction, competitive advantage, products, foundation, home appliances
Procedia PDF Downloads 2731192 Service Blueprinting: A New Application for Evaluating Service Provision in the Hospice Sector
Authors: L. Sudbury-Riley, P. Hunter-Jones, L. Menzies, M. Pyrah, H. Knight
Abstract:
Just as manufacturing firms aim for zero defects, service providers strive to avoid service failures where customer expectations are not met. However, because services comprise unique human interactions, service failures are almost inevitable. Consequently, firms focus on service recovery strategies to fix problems and retain their customers for the future. Because a hospice offers care to terminally ill patients, it may not get the opportunity to correct a service failure. This situation makes the identification of what hospice users really need and want, and to ascertain perceptions of the hospice’s service delivery from the user’s perspective, even more important than for other service providers. A well-documented and fundamental barrier to improving end-of-life care is a lack of service quality measurement tools that capture the experiences of user’s from their own perspective. In palliative care, many quantitative measures are used and these focus on issues such as how quickly patients are assessed, whether they receive information leaflets, whether a discussion about their emotional needs is documented, and so on. Consequently, quality of service from the user’s perspective is overlooked. The current study was designed to overcome these limitations by adapting service blueprinting - never before used in the hospice sector - in order to undertake a ‘deep-dive’ to examine the impact of hospice services upon different users. Service blueprinting is a customer-focused approach for service innovation and improvement, where the ‘onstage’ visible service user and provider interactions must be supported by the ‘backstage’ employee actions and support processes. The study was conducted in conjunction with East Cheshire Hospice in England. The Hospice provides specialist palliative care for patients with progressive life-limiting illnesses, offering services to patients, carers and families via inpatient and outpatient units. Using service blueprinting to identify every service touchpoint, in-depth qualitative interviews with 38 in-patients, outpatients, visitors and bereaved families enabled a ‘deep-dive’ to uncover perceptions of the whole service experience among these diverse users. Interviews were recorded and transcribed, and thematic analysis of over 104,000 words of data revealed many excellent aspects of Hospice service. Staff frequently exceed people’s expectations. Striking gratifying comparisons to hospitals emerged. The Hospice makes people feel safe. Nevertheless, the technique uncovered many areas for improvement, including serendipity of referrals processes, the need for better communications with external agencies, improvements amid the daunting arrival and admissions process, a desperate need for more depression counselling, clarity of communication pertaining to actual end of life, and shortcomings in systems dealing with bereaved families. The study reveals that the adapted service blueprinting tool has major advantages of alternative quantitative evaluation techniques, including uncovering the complex nature of service user’s experiences in health-care service systems, highlighting more fully the interconnected configurations within the system and making greater sense of the impact of the service upon different service users. Unlike other tools, this in-depth examination reveals areas for improvement, many of which have already been implemented by the Hospice. The technique has potential to improve experiences of palliative and end-of-life care among patients and their families.Keywords: hospices, end-of-life-care, service blueprinting, service delivery
Procedia PDF Downloads 1921191 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 971190 Using Kalosara Tradition for Conflict Resolution in Tolaki's People, Southeast Sulawesi
Authors: S. S. Ramis Rauf
Abstract:
This study will be explained the role of local wisdom in Tolakinese customary law on customs offense. The scope of this study was the informants who have a conflict located in Southeast Sulawesi. Then, their conflicts were resolved by using Kalosara tradition. The method of this study was a qualitative research by applying the techniques of deep interviews, revealing experiences and stories from informants, interviews customary leaders who are skilled and experienced in the customary settlement process of Kalosara tradition. Kalosara, as Tolakinese local wisdom, has contained in Tolakinese customary law. Kalosara was the application of customary law which was guided by Tolaki’s people when there was a problem. Knowledge and understanding of the customs have been conceived as something that comes from the ancestors. They created custom rules based on the law of Allah SWT for the elderly to do with full of awareness. Then, it was hereditary obeying by their children from generation to generation. The conflict occurred because of several things, namely bad words, aspersion, and other violations (such as harassment and affair). In custom settlement process, kalosara was done by using the enforcement of Tolakinese customary law that managed within an institution. It was called as Sara Wonua. It led by someone who was called as Pu'utobu that serves as a customary leader.Keywords: kalosara, conflict resolution, tradition, unity, diversity
Procedia PDF Downloads 2101189 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 1031188 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1821187 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 1591186 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1471185 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations
Authors: Reza Soleimanpour, Ching Tai Ng
Abstract:
Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves
Procedia PDF Downloads 2041184 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 251183 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy
Authors: Chhabi Nigam, S. Ramakrishnan
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR
Procedia PDF Downloads 2181182 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 831181 Community Adaptation of Drought Disaster in Grobogan District, Central Java Province, Indonesia
Authors: Chatarina Muryani, Sarwono, Sugiyanto Heribentus
Abstract:
Major part of Grobogan District, Central Java Province, Indonesia, always suffers from drought every year. The drought has implications toward almost all of the community activities, both domestic, agriculture, livestock, and industrial. The aim of this study was to determine (1) the drought distribution area in Grobogan District in 2015; (2) the impact of drought; and (3) the community adaptation toward the drought. The subject of the research was people who were impacted by the drought, purposive sampling technique was used to draw the sample. The data collection method was using field observation and in-depth interview while the data analysis was using descriptive analysis. The results showed that (1) in 2015, there were 14 districts which were affected by the drought and only 5 districts which do not suffer from drought, (2) the drought impacted to the reduction of water for domestic compliance, reduction of agricultural production, reduction of public revenue, (3) community adaptation to meet domestic water need was by making collective deep-wells and building water storages, adaptation in agriculture was done by setting the cropping pattern, while adaptation on economics was by allocating certain amount of funds for the family in anticipation of drought, which was mostly to purchase water.Keywords: adaptation, distribution, drought, impacts
Procedia PDF Downloads 3781180 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui
Abstract:
A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines
Procedia PDF Downloads 1491179 Social Impact Evaluation in the Housing Sector
Authors: Edgard Barki, Tânia Modesto Veludo-de-Oliveira, Felipe Zambaldi
Abstract:
The social enterprise sector can be characterized as organizations that aim to solve social problems with financial sustainability and using market mechanisms. This sector has shown an increasing interest worldwide. Despite the growth and relevance of the sector, there is still a gap regarding the assessment of the social impact resulting from the initiatives of the organizations in this field. A number of metrics have been designed worldwide to evaluate the impact of social enterprises (e.g., IRIS, GIIRS, BACO), as well as some ad hoc studies that have been carried out, mainly in the microcredit sector, but there is still a gap to be filled in the development of research in social impact evaluation. Therefore, this research seeks to evaluate the social impact of two social enterprises (Terra Nova and Vivenda) in the area of housing in Brazil. To evaluate these impacts and their dimensions, we conducted an exploratory research, through three focus groups, thirty in-depth interviews and a survey with beneficiaries of both organizations. The results allowed us to evaluate how the two organizations were able to create a deep social impact in the populations served. Terra Nova has a more collective perspective, with a clear benefit of social inclusion and improvement of the community’s infrastructure, while Vivenda has a more individualized perspective, improving self-esteem, sociability and family coexistence.Keywords: Brazil, housing, social enterprise, social impact evaluation
Procedia PDF Downloads 4431178 Analysis of Importance of Culture in Distributed Design Based on the Case Study at the University of Strathclyde
Authors: Zixuan Yang
Abstract:
This paper presents an analysis of the necessary consideration culture in distributed design through a thorough literature review and case study. The literature review has identified that the need for understanding cultural differences in product design and user evaluations is highlighted by analyzing cross-cultural influences; culture plays a significant role in distributed work, particularly in establishing team cohesion, trust, and credibility early in the project. By applying approaches of Geert Hofstede's dimensions and Fukuyama's trust analysis, a case study of a global design project, i.e., multicultural distributed teamwork solving the problem in terms of reducing the risk of deep vein thrombosis, showcases cultural dynamics, emphasizing trust-building and decision-making. The lessons learned emphasized the importance of cultural awareness, adaptability, and the utilization of scientific theories to enable effective cross-cultural collaborations in global design, providing valuable insights into navigating cultural diversity within design practices.Keywords: culture, distributed design, global design, Geert Hofstede's dimensions, Fukuyama's trust analysis
Procedia PDF Downloads 681177 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 2151176 Investigation and Identification of a Number of Precious and Semi-precious Stones Related to Bam Historical Citadel Using Micro Raman Spectroscopy and Scanning Electron Microscopy (SEM/EDX)
Authors: Nazli Darkhal
Abstract:
The use of gems and ornaments has been common in Iran since the beginning of history. The prosperity of the country, the wealth, and the interest of the people of this land in luxurious and glorious life, combined with beauty, have always attracted the attention of the gems and ornaments of the Iranian people. Iranians are famous in the world for having a long history of collecting and recognizing precious stones. In this case, we can use the unique treasure of national jewelry. Raman spectroscopy method is one of the oscillating spectroscopy methods that is classified in the group of nondestructive study methods, and like other methods, in addition to several advantages, it also has disadvantages and problems. Micro Raman spectroscopy is one of the different types of Raman spectroscopy in which an optical microscope is combined with a Raman device to provide more capabilities and advantages than its original method. In this way, with the help of Raman spectroscopy and a light microscope, while observing more details from different parts of the historical sample, natural or artificial pigments can be identified in a small part of it. The EDX electron microscope also functions as the basis for the interaction of the electron beam with the matter. The beams emitted from this interaction can be used to examine samples. In this article, in addition to introducing the micro Raman spectroscopy method, studies have been conducted on the structure of three samples of existing stones in the historic citadel of Bam. Using this method of study on precious and semi-precious stones, in addition to requiring a short time, can provide us with complete information about the structure and theme of these samples. The results of experiments and gemology of the stones showed that the selected beads are agate and jasper, and they can be placed in the chalcedony group.Keywords: bam citadel, precious and semi-precious stones, Raman spectroscopy, scanning electron microscope
Procedia PDF Downloads 1341175 The Findings EEG-LORETA about Epilepsy
Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi
Abstract:
Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.Keywords: epilepsy, EEG, EEG-LORETA
Procedia PDF Downloads 5451174 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.Keywords: safety coefficient, group pile, slope, stability, FLAC3D software
Procedia PDF Downloads 941173 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 1421172 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop
Procedia PDF Downloads 1701171 Integrating HOTS Activities with Geogebra in Pre-Service Teachers' Preparation
Authors: Wajeeh Daher, Nimer Baya'a
Abstract:
High Order Thinking Skills (HOTS) are suggested today as essential for the cognitive development of students and as preparing them for real life skills. Teachers are encouraged to use HOTS activities in the classroom to help their students develop higher order skills and deep thinking. So it is essential to prepare pre-service teachers to write and use HOTS activities for their students. This paper describes a model for integrating HOTS activities with GeoGebra in pre-service teachers’ preparation. This model describes four aspects of HOTS activities and working with them: Activity components, preparation procedure, strategies and processes used in writing a HOTS activity and types of the HOTS activities. In addition, the paper describes the pre-service teachers' difficulties in preparing and working with HOTS activities, as well as their perceptions regarding the use of these activities and GeoGebra in the mathematics classroom. The paper also describes the contribution of a HOTS activity to pupils' learning of mathematics, where this HOTS activity was prepared and taught by one pre-service teacher.Keywords: high order thinking skills, HOTS activities, pre-service teachers, professional development
Procedia PDF Downloads 3471170 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 195