Search results for: predictive density functions
4530 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells
Authors: Mohanapriya Subramanian, V. Raj
Abstract:
Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.Keywords: biopolymers, fuel cells, nanocomposite, methanol crossover
Procedia PDF Downloads 1354529 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 1484528 Design of Data Management Software System Supporting Rendezvous and Docking with Various Spaceships
Authors: Zhan Panpan, Lu Lan, Sun Yong, He Xiongwen, Yan Dong, Gu Ming
Abstract:
The function of the two spacecraft docking network, the communication and control of a docking target with various spacecrafts is realized in the space lab data management system. In order to solve the problem of the complex data communication mode between the space lab and various spaceships, and the problem of software reuse caused by non-standard protocol, a data management software system supporting rendezvous and docking with various spaceships has been designed. The software system is based on CCSDS Spcecraft Onboard Interface Service(SOIS). It consists of Software Driver Layer, Middleware Layer and Appliaction Layer. The Software Driver Layer hides the various device interfaces using the uniform device driver framework. The Middleware Layer is divided into three lays, including transfer layer, application support layer and system business layer. The communication of space lab plaform bus and the docking bus is realized in transfer layer. Application support layer provides the inter tasks communitaion and the function of unified time management for the software system. The data management software functions are realized in system business layer, which contains telemetry management service, telecontrol management service, flight status management service, rendezvous and docking management service and so on. The Appliaction Layer accomplishes the space lab data management system defined tasks using the standard interface supplied by the Middleware Layer. On the basis of layered architecture, rendezvous and docking tasks and the rendezvous and docking management service are independent in the software system. The rendezvous and docking tasks will be activated and executed according to the different spaceships. In this way, the communication management functions in the independent flight mode, the combination mode of the manned spaceship and the combination mode of the cargo spaceship are achieved separately. The software architecture designed standard appliction interface for the services in each layer. Different requirements of the space lab can be supported by the use of standard services per layer, and the scalability and flexibility of the data management software can be effectively improved. It can also dynamically expand the number and adapt to the protocol of visiting spaceships. The software system has been applied in the data management subsystem of the space lab, and has been verified in the flight of the space lab. The research results of this paper can provide the basis for the design of the data manage system in the future space station.Keywords: space lab, rendezvous and docking, data management, software system
Procedia PDF Downloads 3674527 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry
Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu
Abstract:
The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS
Procedia PDF Downloads 2784526 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 2324525 Ethno-Religious Conflicts In Nigeria; Implications for National Security
Authors: Samuel Onyekachi Chidi
Abstract:
Nigeria today faces more internal threats stemming from ethnic and religious conflicts than external sources. This article seeks to examine the ethno-religious conflicts in Nigeria from 2015 to 2021 and their impact on national security. The research was guided by six objectives. The theoretical framework adopted for this study is Structural Conflict Theory, which provides an adequate explanation, a predictive rationale for the frequent occurrence of ethno-religious conflicts and a tendency to provide the necessary insight for their resolution. The results of the study revealed that there is a strong relationship between ethnicity, religion, conflict and national security and that the ethno-religious conflicts experienced in Nigeria have gross implications for national security. The study recommends that the secularity of the Nigerian state be restored and preserved and that the state of origin be removed and replaced by the state of residence in all our national documents, as this will reduce ethnic identity, which is in opposition to nationalism. Religious leaders, traditional rulers, the media and other stakeholders should support the government in its fight to reduce ethno-religious conflict by sensitizing its youth, preaching unity and peaceful coexistence, and discouraging the use of violence as a means of settling disputes between groups and individuals.Keywords: ethnicity, religion, conflict, national security
Procedia PDF Downloads 764524 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 164523 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network
Procedia PDF Downloads 4684522 Preventive Effect of Stem Back Extracts of Coula edulis Baill. against High-Fat / High Sucrose Diet-Induced Insulin Resistance and Oxidative Stress in Rats
Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben
Abstract:
Background: Insulin resistance (IR) and oxidative stress are associated with obesity, diabetes mellitus, and other cardio metabolic disorders. The aim of this study was to investigate the effect of Coula edulis extracts (CEE) on insulin resistance and oxidative stress markers in high-fat/high sucrose diet-induced insulin resistance in rats. Materials and Methods: Thirty male rats were divided into 6 groups of 5 rats each fed, received daily oral administration of CE extracts for 8 weeks as follows: Group 1 or negative control group, fed with standard diet (SD); Group 2 fed with high-fat/high sucrose diet (HFHS) only; Group3 fed with HFHS + CEAq 200; Group 4 fed with HFHS + CEAq 400; Group 5 fed with HFHS + CEEt 200; Group 6 fed with HFHS + CEEt 400. At the end of the experiment (8 weeks), animals were sacrificed plasma lipid profile, glucose, insulin, oxidative marker and digestive enzyme activities were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Results: Feedings with HFHS significantly (p < 0.01) induced plasma hyperglycaemia, hyperinsulinaemia, increased triglyceride, total cholesterol, and low-density lipoprotein levels, decreased high-density lipoprotein levels, alterations of α amylase, and glucose-6-phosphatase activities, and oxidative stress. Daily oral administration with CEE for eight weeks after insulin resistance induction had a hypolipidaemic action, antioxidative activities and modulated metabolic markers. Ethanolic extract at the higher dose had the best effect on body weight gain and insulin resistance, whereas aqueous extract showed the better activity on hyperlipidemia. Conclusion: These results suggest that CEAq and CEEt at 400mg/kg are promising complementary supplements that can be used to protect better from metabolic disorders associated with HFHS.Keywords: Coula edulis Baill, high-fat / high sucrose diet, insulin resistance, oxidative stress
Procedia PDF Downloads 3044521 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition
Authors: Habtamu Garoma Debela, Gemechis File Duressa
Abstract:
In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent
Procedia PDF Downloads 1414520 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 1754519 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 804518 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell
Authors: Abidullah, Basharat Hussain, Jong Seok Kim
Abstract:
Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs
Procedia PDF Downloads 1234517 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions
Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat
Abstract:
Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity
Procedia PDF Downloads 654516 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 4284515 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 1264514 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 1364513 Application of Chinese Remainder Theorem to Find The Messages Sent in Broadcast
Authors: Ayubi Wirara, Ardya Suryadinata
Abstract:
Improper application of the RSA algorithm scheme can cause vulnerability to attacks. The attack utilizes the relationship between broadcast messages sent to the user with some fixed polynomial functions that belong to each user. Scheme attacks carried out by applying the Chinese Remainder Theorem to obtain a general polynomial equation with the same modulus. The formation of the general polynomial becomes a first step to get back the original message. Furthermore, to solve these equations can use Coppersmith's theorem.Keywords: RSA algorithm, broadcast message, Chinese Remainder Theorem, Coppersmith’s theorem
Procedia PDF Downloads 3394512 Human Pressure Threaten Swayne’s Hartebeest to Point of Local Extinction from the Savannah Plains of Nech Sar National Park, South Rift Valley, Ethiopia
Authors: Simon Shibru, Karen Vancampenhout, Jozef Deckers, Herwig Leirs
Abstract:
We investigated the population size of the endemic and endangered Swayne’s Hartebeest (Alcelaphus buselaphus swaynei) in Nech Sar National Park from 2012 to 2014 and document the major threats why the species is on the verge of local extinction. The park was once known for its abundant density of Swayne’s Hartebeest. We used direct total count methods for a census. We administered semi-structured interviews and open-ended questionnaires with senior scouts who are the member of the local communities. Historical records were obtained to evaluate the population trends of the animals since 1974. The density of the animal decreased from 65 in 1974 to 1 individual per 100 km2 in 2014 with a decline of 98.5% in the past 40 years. The respondents agreed that the conservation status of the park was in its worst condition ever now with only 2 Swayne’s Hartebeest left, with a rapid decline from 4 individuals in 2012 and 12 individuals in 2009. Mainly hunting and habitat loss, but also the unsuitable season of reproduction and shortage of forage as minor factors were identified as threats for a local extinction of the Swayne’s Hartebeests. On the other hand, predation, fire, disease, and ticks were not considered a cause for the declining trend. Hunting happens mostly out of some kind of revenge since the local community thought that they were pushed out from the land because of the presence of Swayne's Hartebeest in the area. Respondents agreed that the revenge action of the local communities was in response to their unwillingness to be displaced from the park in 1982/3. This conflict situation is resulting from the exclusionary wildlife management policy of the country. We conclude that the human interventions in general and illegal hunting, in particular, pushed the Swayne’s Hartebeest to a point of local extinction. Therefore, we recommend inclusive wildlife management approach for continuing existence of the park together with its natural resources so that sustainable use of the resources is in place.Keywords: hunting, habitat destruction, local extinction, Nech Sar National Park, Swayne’s Hartebeest
Procedia PDF Downloads 4734511 Use of Multistage Transition Regression Models for Credit Card Income Prediction
Authors: Denys Osipenko, Jonathan Crook
Abstract:
Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability
Procedia PDF Downloads 4844510 Forecasting of the Mobility of Rainfall-Induced Slow-Moving Landslides Using a Two-Block Model
Authors: Antonello Troncone, Luigi Pugliese, Andrea Parise, Enrico Conte
Abstract:
The present study deals with the landslides periodically reactivated by groundwater level fluctuations owing to rainfall. The main type of movement which generally characterizes these landslides consists in sliding with quite small-displacement rates. Another peculiar characteristic of these landslides is that soil deformations are essentially concentrated within a thin shear band located below the body of the landslide, which, consequently, undergoes an approximately rigid sliding. In this context, a simple method is proposed in the present study to forecast the movements of this type of landslides owing to rainfall. To this purpose, the landslide body is schematized by means of a two-block model. Some analytical solutions are derived to relate rainfall measurements with groundwater level oscillations and these latter, in turn, to landslide mobility. The proposed method is attractive for engineering applications since it requires few parameters as input data, many of which can be obtained from conventional geotechnical tests. To demonstrate the predictive capability of the proposed method, the application to a well-documented landslide periodically reactivated by rainfall is shown.Keywords: rainfall, water level fluctuations, landslide mobility, two-block model
Procedia PDF Downloads 1204509 Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation
Authors: Nega Tesfie Asfaw, Rafik Absi, Labouda B. A, Ikram El Abbassi
Abstract:
Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay.Keywords: bio-based materials, thermal conductivity, compressive strength, thermal performance
Procedia PDF Downloads 264508 Orientation towards Social Entrepreneurship-Prioritary: Givens for Overcoming Social Inequality
Authors: Revaz Gvelesiani
Abstract:
Nowadays, social inequality increasingly strengthens the trend from business entrepreneurship to social entrepreneurship. It can be said that business entrepreneurs, according to their interests, move towards social entrepreneurship. Effectively operating markets create mechanisms, which lead to 'good' behavior. This is the most important feature of the rationally functioning society. As for the prospects of social entrepreneurship, expansion of entrepreneurship concept at the social arena may lead to such an outcome, when people who are skeptical about business, become more open towards entrepreneurship as a type of activity. This is the way which by means of increased participation in entrepreneurship promotes fair distribution of wealth. Today 'entrepreneurship for all' is still a dream, although the one, which may come true.Keywords: social entrepreneurship, business entrepreneurship, functions of entrepreneurship, social inequality, social interests, interest groups, interest conflicts
Procedia PDF Downloads 3604507 The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project
Authors: Paul Essel, Eric T. Glover, Gustav Gbeddy, Yaw Adjei-Kyereme, Abdallah M. A. Dawood, Evans M. Ameho, Emmanuel A. Aberikae
Abstract:
Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system.Keywords: radionuclides, disposal, radioactive waste, engineered barrier
Procedia PDF Downloads 804506 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability
Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks
Abstract:
Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.Keywords: open-cut, mining, erosion, rainfall simulator
Procedia PDF Downloads 1004505 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS
Procedia PDF Downloads 1764504 The Role of Industrial Design in Fashion
Authors: Rojean Ghafariasar, Leili Nosrati
Abstract:
The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.Keywords: fashion, design, industrial design, crossover design
Procedia PDF Downloads 904503 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering
Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola
Abstract:
Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials
Procedia PDF Downloads 704502 Development of Bioplastic Disposable Food Packaging from Starch and Cellulose
Authors: Lidya Hailu, Ramesh Duraisamy, Masood Akhtar Khan, Belete Yilma
Abstract:
Disposable food packaging is a single-use plastics that can include any disposable plastic item which could be designed and use only once. In this context, this study aimed to prepare and evaluate bioplastic food packaging material from avocado seed starch and sugarcane bagasse cellulose and to characterise avocado seed starch. Performed the physicomechanical, structural, thermal properties, and biodegradability of raw materials and readily prepared bioplastic using the universal tensile testing machine, FTIR, UV-Vis spectroscopy, TGA, XRD, and SEM. Results have shown that an increasing amount of glycerol (3-5 mL) resulted in increases in water absorption, density, water vapor permeability, and elongation at the break of prepared bioplastic. However, it causes decreases in % transmittance, thermal degradation, and the tensile strength of prepared bioplastic. Likewise, the addition of cellulose fiber (0-15 %) increases % transmittance ranged (91.34±0.12-63.03±0.05 %), density (0.93±0.04-1.27±0.02 g/cm3), thermal degradation (310.01-321.61°C), tensile strength (2.91±6.18-4.21±6.713 MPa) of prepared bioplastic. On the other hand, it causes decreases in water absorption (14.4±0.25-9.40±0.007 %), water vapor permeability (9.306x10-12±0.3-3.57x10-12±0.15 g•s−1•m−1•Pa−1) and elongation at break (34.46±3.37-27.63±5.67 %) of prepared bioplastic. All the readily prepared bioplastic films rapidly degraded in the soil in the first 6 days and decompose within 12 days with a diminutive leftover and completely degraded within 15 days under an open soil atmosphere. Studied results showed starch derived bioplastic reinforced with 15 % cellulose fiber that plasticized with 3 mL of glycerol had improved results than other combinations of glycerol and bagasse cellulose with avocado seed starch. Thus, biodegradable disposable food packaging cup has been successfully produced in the lab-scale level using the studied approach. Biodegradable disposable food packaging materials have been successfully produced by employing avocado seed starch and sugarcane bagasse cellulose. The future study should be done on nano scale production since this study was done at the micro level.Keywords: avocado seed, food packaging, glycerol, sugarcane bagasse
Procedia PDF Downloads 3354501 Plasmodium falciparum Infection and SARS-CoV-2 Immunoglobulin-G Positivity Rates Among Primary Healthcare Centre Attendees in Osogbo, Nigeria
Authors: Ojo Oo, Akinde S. B., Kiilani A. O., Jayeola Jo, Jogbodo T. M., Ajani Ka, Olaniyan So, Adeagbo Oy, Bolarinwa Ra, Durosomo Ha, Sule W. F.
Abstract:
Lockdown imposed to control SARS-CoV-2 transmission hampered malaria control services in Nigeria. Considering COVID-19 vaccination, we assessed Plasmodium falciparum (Pf) antigen and SARS-CoV-2 immunoglobulin-G (IgG) positivity among adults in Osogbo, Osun State, Nigeria. Consenting attendees of four Healthcare Centres were consecutively enrolled for blood sampling; relevant socio-demographic/behavioral/clinical/environmental data were collected with a questionnaire. Samples were tested, using commercial rapid test kits, for Pf antigen and SARS-CoV-2 IgG and results were analyzed using logistic regression. Participants' mean age was 40.99 years (n=200), and they were predominantly females (84.5%), traders/businessmen/women (86.0%), with self-reported receipt of COVID-19 vaccine from 123 (61.5%). Pf antigen positivity was 17.5% (95% CI: 12.23–22.77%) with age (p=0.004), marital status (p=0.004), report of stagnant water around the workplace (p=0.041) and bush around homes (p=0.008) being associated. SARS-CoV-2 IgG positivity was 56.5% (95% CI: 49.63–63.37%) with age (p=0.012) and receipt of COVID-19 vaccination (p=0.001) being associated. Although the vaccinated had a 22.8 times higher likelihood of IgG positivity, no factor was predictive of COVID-19 vaccine receipt. We report 17.5% Pf antigen positivity with four predictors, and 56.5% SARS-CoV-2 IgG positivity with two predictors.Keywords: COVID-19, vaccine, IgG, Plasmodium falciparum, SARS-CoV-2
Procedia PDF Downloads 137