Search results for: magnetic force
1296 Factors Motivating Experienced Secondary Teachers to Remain in the Teaching Profession
Authors: Joselito Castro Gutierrez, Herbert Orteza, Jervie Boligon, Kenneth Esteves, Edrick Kevin Ferrer, Mark Kevin Torres, Patrick Vergara
Abstract:
Teaching is a noble profession that involves an effective imparting of holistic learning. Consequently, it requires a driving force called motivation. This research aims to determine the motivating factors, problems encountered, solutions made by experienced secondary school teachers to remain in the teaching profession. A mixed unstructured/structured questionnaire was used for gathering data among public secondary school teachers. The researchers have arrived to a conclusion that the dominant motivating factors of teachers to stay in the profession are altruism, extrinsic factors, and self-efficacy. Meanwhile, the prevalent problems these experienced secondary teachers experienced are mutual dilemma, work overload, and personal issues. Teachers have varied methods on solving the problem which are: a) Direct Solution; b) Indirect Solution; and c) Pseudo-Solutions. Lastly, the factors, problems, and solutions, have influential effects on how long a teacher would sustain in teaching which would manifest as positive, negative and neutral effects.Keywords: motivation, common problems of teachers, strategies in solving problems, teaching profession
Procedia PDF Downloads 4461295 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 2571294 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning
Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani
Abstract:
Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.Keywords: FEA, RSM, process parameters, sheet metal spinning
Procedia PDF Downloads 3191293 The Legal Position of Criminal Prevention in the Metaverse World
Authors: Andi Intan Purnamasari, Supriyadi, Sulbadana, Aminuddin Kasim
Abstract:
Law functions as social control. Providing arrangements not only for legal certainty, but also in the scope of justice and expediency. The three values achieved by law essentially function to bring comfort to each individual in carrying out daily activities. However, it is undeniable that global conditions have changed the orientation of people's lifestyles. Some people want to ensure their existence in the digital world which is popularly known as the metaverse. Some countries even project their city to be a metaverse city. The order of life is no longer limited to the real space, but also to the cyber world. Not infrequently, legal events that occur in the cyber world also force the law to position its position and even prevent crime in cyberspace. Through this research, conceptually it provides a view of the legal position in crime prevention in the Metaverse world. when the law acts to regulate the situation in the virtual world, of course some people will feel disturbed, this is due to the thought that the virtual world is a world in which an avatar can do things that cannot be done in the real world, or can be called a world without boundaries. Therefore, when the law is present to provide boundaries, of course the concept of the virtual world itself becomes no longer a cyber world that is not limited by space and time, it becomes a new order of life. approach, approach, approach, approach, and approach will certainly be the method used in this research.Keywords: crime, cyber, metaverse, law
Procedia PDF Downloads 1501292 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach
Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman
Abstract:
Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.Keywords: high protein and energy diet, boron, metabolomics, transcriptomic
Procedia PDF Downloads 6271291 The Integrated Urban Strategies Based on Deep Urban History and Modern Technology Study: Tourism and Leisure Industries as Driving Force to Reactivate Historical Area
Authors: Cheng Li, Jie Shen, Yutian Tang
Abstract:
Embracing the upcoming era of urbanization with the challenges of limitation of resources, disappearing cultural identities and conflicts among different groups of stakeholders, new integrated approaches are offered in our urban practice to help decision-makers and stakeholders frame and develop well-conceived, practical strategies for urban developing trajectories to approach urban-level sustainability in multiple social, cultural, ecological dimensions. Through bottom-up participation, we take advantage of tourism and leisure industries as driving forces for urbanization in China to promote integrated sustainable systems, with the hope of approaching both historical and ecological aspects of urban sustainability; and also thanks to top-down participation, we have codes, standards and rules established by the governments to strengthen the implementation of ecological urban sustainability. The results are monitored and evaluated experimentally and multidimensionally and the sustainable systems we constructed with local stakeholder groups turned out to be effective. The presentation of our selected projects would indicate our different focuses on urban sustainability.Keywords: urban sustainability, integrated urban strategy, tourism and leisure industries, history, modern technology
Procedia PDF Downloads 3811290 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber
Authors: Sharmili Routray, Kishor Chandra Biswal
Abstract:
The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening
Procedia PDF Downloads 2921289 Effectuating Theology of Culture: The Only Weapon to Confront 21st Century Global Godless Culture
Authors: Hram Bik
Abstract:
This is an analytical paper on how to apply theology to the global godless culture. The paper will analyze and materialize theology of culture and come up with theo-cultural principles which will enable Christians to properly engage with today godless culture. If theology and daily life are in any way split apart, Christians will lose the authenticity essential to their calling. Living out godliness in the ungodly culture requires materializing theology into daily life. To do that has become an unbeatable challenge for Christians in 21st century with the overtaking in of global godless culture enforced by Information Technology resulting in rapid and chaotic change of global lifestyles wherein Christianity stands in danger of being swallowed up. Staying away from the culture will rob Christianity of its mission to witness and staying with and like it will rob Christianity of its effectiveness. Thus the question is how should today Christians apply theology to the culture wherein what are said to be sins in the Bible no longer look like sins? Should we forge an all-out war against it or should distance ourselves away from it? The extreme response to it could fruit Christian Jihadism on the right and the apathetic response would let it booming with no one attempting to stop it on the left. This paper calls for global Christians to essentially make theology a part of their daily lives to form a united global force to influence the godless global culture by influencing our own family and community.Keywords: Christians, global culture, godliness, theology
Procedia PDF Downloads 2691288 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces
Authors: Belkacem Chebil Sonia, Bensalem Wacef
Abstract:
The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination
Procedia PDF Downloads 3101287 Upgrading Engineering Education in Häme University of Applied Sciences: Towards Teacher Teams, Flexible Processes and Versatile Company Collaboration
Authors: Jussi Horelli, Salla Niittymäki
Abstract:
In this acceleratingly developing world, it will be crucial for our students to not only to adapt to continuous change, but to be the driving force of it. This raises the question of how can the educational processes motivate and encourage the students to learn the perhaps most important skill there for their further work career: the ability to learn and absorb more by themselves. In engineering education, the learning contents and methods have traditionally been very substance oriented and teacher-centered. In Häme University of Applied Sciences (HAMK), the pedagogical model has been completely renewed during the past few years. Terms like phenomenon or skills-based learning and collaborative teaching are things which have not very often been related to engineering education, but are now the foundation of HAMK’s pedagogical model in all disciplines, even in engineering studies. In this paper, a new flexible way of executing engineering studies will be introduced. The paper will summarize three years’ experiences and observations of a process where traditional teacher-centric mechanical engineering teaching was converted into a model where teachers work collaboratively in teams supporting the students’ learning processes.Keywords: team teaching, collaborative learning, engineering education, new pedagogy
Procedia PDF Downloads 2221286 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube
Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi
Abstract:
Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators
Procedia PDF Downloads 1251285 Effect of Radiotherapy/Chemotherapy Protocol on the Gut Microbiome in Pediatric Cancer Patients
Authors: Nourhan G. Sahly, Ahmed Moustafa, Mohamed S. Zaghloul, Tamer Z. Salem
Abstract:
The gut microbiome plays important roles in the human body that includes but not limited to digestion, immunity, homeostasis and response to some drugs such as chemotherapy and immunotherapy. Its role has also been linked to radiotherapy and associated gastrointestinal injuries, where the microbial dysbiosis could be the driving force for dose determination or the complete suspension of the treatment protocol. Linking the gut microbiota alterations to different cancer treatment protocols is not easy especially in humans. However, enormous effort was exerted to understand this complex relationship. In the current study, we described the gut microbiota dysbiosis in pediatric sarcoma patients, in the pelvic region, with regards to radiotherapy and antibiotics. Fecal samples were collected as a source of microbial DNA for which the gene encoding for V3-V5 regions of 16S rRNA was sequenced. Two of the three patients understudy had experienced an increase in alpha diversity post exposure to 50.4 Gy. Although phylum Firmicutes overall relative abundance has generally decreased, six of its taxa increased in all patients. Our results may indicate the possibility of radiosensitivity or enrichment of the antibiotic resistance of the elevated taxa. Further studies are needed to describe the extent of radiosensitivity with regards to antibiotic resistance.Keywords: combined radiotherapy and chemotherapy, gut microbiome, pediatric cancer, radiosensitivity
Procedia PDF Downloads 1511284 Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players
Authors: Svetlana Missina, Anatoliy Shipilov, Alexandr Vavaev
Abstract:
The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football.Keywords: agility, female football players, sprint performance, vertical jump height
Procedia PDF Downloads 4701283 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors
Authors: Hadjoui Abdelhamid, Saimi Ahmed
Abstract:
The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM
Procedia PDF Downloads 2341282 Analysis of Mechanisms for Design of Add-On Device to Assist in Stair Climbing of Wheelchairs
Authors: Manish Kumar Prajapat, Vishwajeet Sikchi
Abstract:
In the present scenario, many motorized stair climbing wheelchairs are available in the western countries which are significantly expensive and hence are not popular in developing countries. Also, such wheelchairs tend to be bulkier and heavy which makes their use for normal conditions difficult. Manually operated solutions are rarely explored in this space. Therefore, this project aims at developing a manually operated cost effective solution for the same. Differently abled people are not required to climb stairs frequently in their daily use. Because of this, carrying a stair climbing mechanism attached to the wheelchair permanently adds redundant weight to the wheelchair which reduces ease of use of the wheelchair. Hence, the idea of add-on device for stair climbing was envisaged wherein the wheelchair is mounted onto add-on only at the time when climbing the stairs is required. This work analyses in detail the mechanism for stair climbing of conventional wheelchair followed by analysis and iterations on multiple mechanisms to identify the most suitable mechanism for application in the add-on device. Further, this work imparts specific attention to optimize the force and time required for stair climbing of wheelchairs. The most suitable mechanism identified was validated by building and testing a prototype.Keywords: add-on device, Rocker-Bogie, stair climbing, star wheel, y wheel
Procedia PDF Downloads 2121281 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations
Authors: Ahmed Alkarimi, Kevin Welham
Abstract:
Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.Keywords: LC separation, proteins separation, monolithic column, mixed mode
Procedia PDF Downloads 1651280 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers
Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz
Abstract:
Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.Keywords: electrospinning, nanofibers, montmorillonite, materials science
Procedia PDF Downloads 3451279 Behavior of an Elevated Liquid Storage Tank under Near-Fault Earthquakes
Authors: Koushik Roy, Sourav Gur, Sudib K. Mishra
Abstract:
Evidence of pulse type features in near-fault ground motions has raised serious concern to the structural engineering community, in view of their possible implications on the behavior of structures located on the fault regions. Studies in the recent past explore the effects of pulse type ground motion on the special structures, such as transmission towers in view of their high flexibility. Identically, long period sloshing of liquid in the storage tanks under dynamic loading might increase their failure vulnerability under near-fault pulses. Therefore, the behavior of the elevated liquid storage tank is taken up in this study. Simple lumped mass model is considered, with the bilinear force-deformation hysteresis behavior. Set of near-fault seismic ground acceleration time histories are adopted for this purpose, along with the far-field records for comparison. It has been demonstrated that pulse type motions lead to significant increase of the responses; in particular, sloshing of the fluid mass could be as high as 5 times, then the far field counterpart. For identical storage capacity, slender tanks are found to be more vulnerable than the broad ones.Keywords: far-field motion, hysteresis, liquid storage tank, near fault earthquake, sloshing
Procedia PDF Downloads 4031278 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws
Authors: Jia-Jang Wu
Abstract:
This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.Keywords: torsional vibration, full-size model, scale model, scaling laws
Procedia PDF Downloads 3971277 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics
Authors: Mauricio Gracia, Luis Leal, Bharat Verma
Abstract:
Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull
Procedia PDF Downloads 1761276 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study
Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li
Abstract:
Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture
Procedia PDF Downloads 4811275 Formation and Development of Polyspecies Biofilm on the Surface of Ti-7.5Mo Nanotubes Growth
Authors: Escada A. L. A., Pereira C. A., Jorge A. O. C., Alves Claro A. P. R.
Abstract:
In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy to bacterial biofilm formation after surface treatment was evaluated. The Ti–7.5Mo alloy was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 ◦C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Nanotubes were processed using anodic oxidation in 0.25% NH4F electrolyte solution. Biofilms were grown in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groupswas performed, atomic force microscope (AFM) and contact angle. The results show that there is no difference in bacterial adhesion between Ti–7.5Mo alloy nanotube pure titanium and Ti–7.5Mo alloy.Keywords: biofilm, titanium alloy, brain heart infusion, scanning electron microscopy
Procedia PDF Downloads 3181274 Innovating Development: An Exploratory Study of Social Enterprises in Nigeria
Authors: Akor Omachile Opaluwah
Abstract:
Entrepreneurs are heralded as a very vital force in the growth of economies. This is because they create businesses, employ people, have direct access to the local consumer, and primarily utilize local sources of raw materials, have an understanding of the immediate need of consumers, and they have the capacity to keep in motion the economy. The rise of social enterprises takes these advantages further beyond the business and economic benefits. These Social enterprises help address developmental issues in the society while maintaining a profit for their investors and shareholders. These combined roles create a unique synergy between the civil society and the market, therefore placing the social enterprise in a position where they can access directly, the benefits of the market while meeting the needs of the citizens and their environment. With such a unique position, social enterprises hold a place in the development discourse that has previously been left unexplored. This hybridisation of the functions of civil societies and the market can provide to development, practices, and benefits that have previously been only available in trace amounts. It, therefore, is imperative to understand the efficacy of social enterprises. With the discourse of social enterprises still in its early stages. This paper looks at selected social enterprise cases in Nigeria and analyses their approach and contribution to development.Keywords: business, civil society, development, entrepreneurs, innovation, market, Nigeria, social enterprise
Procedia PDF Downloads 3901273 Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires
Authors: Amin Ardali, Mohammadreza Khalili, Mohammadreza Rezai
Abstract:
In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied.Keywords: doubly curved shell, SMA wire, impact response, smart material, shape memory alloy
Procedia PDF Downloads 4061272 Role of Music Education as a Pillar in Sustainable Development of India
Authors: Rohit Rutka
Abstract:
The aim of the present paper is to reveal the importance of music as an indispensable aspect in education of art, with regard to every single culture which serves as indisputable support to sustainable development in India. Indian system of education is one of the oldest systems of the world. Both secular and sacred education was handed over systematically by formalizing the system of education. We have found significant growth in the system of education in our country since ancient times. It is a veritable avenue which enables societies to transmit music and musical skills from one generation to the upcoming ones. The research is based on a comprehensive literature review on the impact of music to sustainable development. This paper contextualized that music education is imperative to Sustainable Development, to the adult. It is a vital force of self-expression, communication and empowerment economically, in growing children, involvement in music education will promote their creative ability, thereby contribute to the full development of intellectual capacities, apt emotional development that gives the right values and feelings to various events and happenings, music helps to develop skills, innate and instinctive talent in human being and recommend that the informal music teaching should be incorporated into school system so as to transmit and preserve the cultural music and that the study of music should be made compulsory at all levels of the Indian educational system.Keywords: sustainable development, music education, culture, music as a pillar to sustainable development
Procedia PDF Downloads 3481271 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery
Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman
Abstract:
Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.Keywords: CGA, IPv6, NDP, SEND
Procedia PDF Downloads 3851270 Dynamic Corrosion Prevention through Magneto-Responsive Nanostructure with Controllable Hydrophobicity
Authors: Anne McCarthy, Anna Kim, Yin Song, Kyoo Jo, Donald Cropek, Sungmin Hong
Abstract:
Corrosion prevention remains an indispensable concern across a spectrum of industries, demanding inventive and adaptable methodologies to effectively tackle the ever-evolving obstacles presented by corrosive surroundings. This abstract introduces a pioneering approach to corrosion prevention that amalgamates the distinct attributes of magneto-responsive polymers with finely adjustable hydrophobicity inspired by the structure of cicada wings, effectively deterring bacterial proliferation and biofilm formation. The proposed strategy entails the creation of an innovative array of magneto-responsive nanostructures endowed with the capacity to dynamically modulate their hydrophobic characteristics. This dynamic control over hydrophobicity facilitates active repulsion of water and corrosive agents on demand. Additionally, the cyclic motion generated by magnetic activation prevents the biofilms formation and rejection. Thus, the synergistic interplay between magneto-active nanostructures and hydrophobicity manipulation establishes a versatile defensive mechanism against diverse corrosive agents. This study introduces a novel method for corrosion prevention, harnessing the advantages of magneto-active nanostructures and the precision of hydrophobicity adjustment, resulting in water-repellency, effective biofilm removal, and offering a promising solution to handle corrosion-related challenges. We believe that the combined effect will significantly contribute to extending asset lifespan, improving safety, and reducing maintenance costs in the face of corrosion threats.Keywords: magneto-active material, nanoimprinting, corrosion prevention, hydrophobicity
Procedia PDF Downloads 651269 Nickel Substituted Cobalt Ferrites via Ceramic Rout Approach: Exploration of Structural, Optical, Dielectric and Electrochemical Behavior for Pseudo-Capacitors
Authors: Talat Zeeshan
Abstract:
Nickel doped cobalt ferrites 〖(Co〗_(1-x) Ni_x Fe_2 O_4) has been synthesized with the variation of Ni dopant (x=0.0, 0.25, 0.50, 0.75) by ball milling route at 150 RPM for 3hrs. The impact of nickel on Co ferrites has been investigated by using various approaches of characterization such as XRD (X-Ray diffraction), SEM (Scanning electron microscopy, FTIR (Fourier transform infrared spectroscopy), UV-Vis spectroscopy, LCR meter and CV (Cyclic voltammetry). The cubic structure of the nanoparticles confirmed by the XRD data, the increase in Ni dopant reduces the crystallite size. FTIR spectroscopy has been employed in order to analyze various functional groups. The agglomerated morphology of the particles has been observed by SEM images.. UV-Vis analysis reveals that the optical energy bandgap progressively rises with nickel doping, from 1.50 eV to 2.02 eV. The frequency range of 20 Hz to 20 MHz has been used for dielectric evaluation, where dielectric parameters such as AC conductivity, tan loss, and dielectric constant are examined. When the frequency of the applied AC field rises the AC conductivity increases, while the dielectric constant and tan loss constantly decrease. The pseudocapacitive behavior revealed by the CV curve showed that at high scan rates, specific capacitance values (Cs) are low, whereas at low scan rates, they are high. At the low scan rate of 10 mVs-1, the maximum specific capacitance of 244.4 Fg-1 has been attained at x = 0.75. Nickel doped cobalt ferrites electrodes have incredible electrochemical characteristics that make them a promising option for pseudo capacitor applications.Keywords: lattice parameters, crystallite size, pseudo capacitor, band gap: magnetic material, energy band gap
Procedia PDF Downloads 201268 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma
Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan
Abstract:
Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma
Procedia PDF Downloads 5681267 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies
Authors: T. S. Almutairi, Paul May, Neil Allan
Abstract:
The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line
Procedia PDF Downloads 116