Search results for: structure and morphology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8661

Search results for: structure and morphology

6441 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications

Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean

Abstract:

In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.

Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering

Procedia PDF Downloads 192
6440 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 105
6439 Evaluation of Biological and Confinement Properties of a Bone Substitute to in Situ Preparation Based on Demineralized Bone Matrix for Bone Tissue Regeneration

Authors: Aura Maria Lopera Echavarria, Angela Maria Lema Perez, Daniela Medrano David, Pedronel Araque Marin, Marta Elena Londoño Lopez

Abstract:

Bone regeneration is the process by which the formation of new bone is stimulated. Bone fractures can originate at any time due to trauma, infections, tumors, congenital malformations or skeletal diseases. Currently there are different strategies to treat bone defects that in some cases, regeneration does not occur on its own. That is why they are treated with bone substitutes, which provide a necessary environment for the cells to synthesize new bone. The Demineralized Bone Matrix (DBM) is widely used as a bone implant due to its good properties, such as osteoinduction and bioactivity. However, the use of DBM is limited, because its presentation is powder, which is difficult to implant with precision and is susceptible to migrating to other sites through blood flow. That is why the DBM is commonly incorporated into a variety of vehicles or carriers. The objective of this project is to evaluate the bioactive and confinement properties of a bone substitute based on demineralized bone matrix (DBM). Also, structural and morphological properties were evaluated. Bone substitute was obtained from EIA Biomaterials Laboratory of EIA University and the DBM was facilitated by Tissue Bank Foundation. Morphological and structural properties were evaluated by scanning electron microscopy (SEM), X-ray diffraction (DRX) and Fourier transform infrared spectroscopy with total attenuated reflection (FTIR-ATR). Water absorption capacity and degradation were also evaluated during three months. The cytotoxicity was evaluated by the MTT test. The bioactivity of the bone substitute was evaluated through immersion of the samples in simulated body fluid during four weeks. Confinement tests were performed on tibial fragments of a human donor with bone defects of determined size, to ensure that the substitute remains in the defect despite the continuous flow of fluid. According of the knowledge of the authors, the methodology for evaluating samples in a confined environment has not been evaluated before in real human bones. The morphology of the samples showed irregular surface and presented some porosity. DRX confirmed a semi-crystalline structure. The FTIR-ATR determined the organic and inorganic phase of the sample. The degradation and absorption measurements stablished a loss of 3% and 150% in one month respectively. The MTT showed that the system is not cytotoxic. Apatite clusters formed from the first week were visualized by SEM and confirmed by EDS. These calcium phosphates are necessary to stimulate bone regeneration and thanks to the porosity of the developed material, osteinduction and osteoconduction are possible. The results of the in vitro evaluation of the confinement of the material showed that the migration of the bone filling to other sites is negligible, although the samples were subjected to the passage of simulated body fluid. The bone substitute, putty type, showed stability, is bioactive, non-cytotoxic and has handling properties for specialists at the time of implantation. The obtained system allows to maintain the osteoinductive properties of DBM and it can fill completely fractures in any way; however, it does not provide a structural support, that is, it should only be used to treat fractures without requiring a mechanical load.

Keywords: bone regeneration, cytotoxicity, demineralized bone matrix, hydrogel

Procedia PDF Downloads 105
6438 Fabrication of Biosensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste Electrode for Determination of Anti-Hypertensive and Prostatic Hyperplasia Drug Terazosin

Authors: Amira M. Hassanein, Nehal A. Salahuddin, Atsunori Matsuda, Toshiaki Hattori, Mona N. Elfiky

Abstract:

New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide- Dodecyl Sulphate/Polypyrrole nanocomposites which were synthesized by in-situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant Dodecyl sulphate as a modifier. The morphology and surface area of the nanocomposites changed with the percentage of Pyrrole. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol.L-1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable, and free from interference by other commonly present excipients in drug formulations.

Keywords: layered double hydroxide, polypyrrole, terazosin hydrochloride, square-wave adsorptive anodic stripping voltammetry

Procedia PDF Downloads 209
6437 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Authors: Apetsi K. Ampiah, Zhao Xin

Abstract:

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Keywords: friction damper, seismic, slip load, viscous damper

Procedia PDF Downloads 159
6436 Characterization of Transmembrane Proteins with Five Alpha-Helical Regions

Authors: Misty Attwood, Helgi Schioth

Abstract:

Transmembrane proteins are important components in many essential cell processes such as signal transduction, cell-cell signalling, transport of solutes, structural adhesion activities, and protein trafficking. Due to their involvement in diverse critical activities, transmembrane proteins are implicated in different disease pathways and hence are the focus of intense interest in understanding functional activities, their pathogenesis in disease, and their potential as pharmaceutical targets. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. In this in silico bioinformatics analysis, we identify and comprehensively characterize the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). We classify nearly 60 5TM proteins in which 31 are members of ten families that contain two or more family members and all members are predicted to contain the 5TM architecture. Furthermore, nine singlet proteins that contain the 5TM architecture without paralogues detected in humans were also identifying, indicating the evolution of single unique proteins with the 5TM structure. Interestingly, more than half of these proteins function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this family in sharp contrast with other TM families. Three major 5TM families were identified and include the Tweety family, which are pore-forming subunits of the swelling-dependent volume regulated anion channel in astrocytes; the sidoreflexin family that acts as mitochondrial amino acid transporters; and the Yip1 domain family engaged in vesicle budding and intra-Golgi transport. About 30% of the proteins have enhanced expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumour types, indicating further investigation into the function and expression of these proteins is important. This study provides the first comprehensive analysis of proteins with 5TM regions and provides details of the unique characteristics and application in pharmaceutical development.

Keywords: 5TM, cancer prognostic marker, drug targets, transmembrane protein

Procedia PDF Downloads 98
6435 Preventive Effects of Silymarin in Retinal Intoxication with Methanol in Rat: Transmission Electron Microscope Study

Authors: A. Zarenezhad, A. Esfandiari, E. Zarenezhad, M. Mardkhoshnood

Abstract:

The aim of this study was to investigate the ultra-structure of the photoreceptor layer of male rats under the effect of methanol intoxication and protective effect of silymarin against the methanol toxicity. Fifteen adult male rats were divided into three groups: Control group, Experimental group I (received 4g/kg methanol by intraperitoneal injection for five days), Experimental group II (received 4 g/kg methanol by intraperitoneal injection for five days and received 250 mg/kg silymarin orally for three months). At the end of the experiment, the eyes were removed; retina was separated near the optic disc and studied by transmission electron microscope. Results showed that the retina in the experimental group I exhibited loss of outer segments and disorganization in inner segment. Increased extra cellular space, disappearance of outer limiting membrane and pyknotic nuclei were seen in this group. But normal outer segment, organized inner segment and normal outer limiting membrane were obvious after treatment with silymarin in experimental group II. These findings show that methanol causes damage in the photoreceptor layer of the rat retina and silymarin can protect the damage to retina against the methanol intoxication.

Keywords: ultra-structure, photoreceptor layer, methanol intoxication, silymarin, rat

Procedia PDF Downloads 279
6434 Explaining Irregularity in Music by Entropy and Information Content

Authors: Lorena Mihelac, Janez Povh

Abstract:

In 2017, we conducted a research study using data consisting of 160 musical excerpts from different musical styles, to analyze the impact of entropy of the harmony on the acceptability of music. In measuring the entropy of harmony, we were interested in unigrams (individual chords in the harmonic progression) and bigrams (the connection of two adjacent chords). In this study, it has been found that 53 musical excerpts out from 160 were evaluated by participants as very complex, although the entropy of the harmonic progression (unigrams and bigrams) was calculated as low. We have explained this by particularities of chord progression, which impact the listener's feeling of complexity and acceptability. We have evaluated the same data twice with new participants in 2018 and with the same participants for the third time in 2019. These three evaluations have shown that the same 53 musical excerpts, found to be difficult and complex in the study conducted in 2017, are exhibiting a high feeling of complexity again. It was proposed that the content of these musical excerpts, defined as “irregular,” is not meeting the listener's expectancy and the basic perceptual principles, creating a higher feeling of difficulty and complexity. As the “irregularities” in these 53 musical excerpts seem to be perceived by the participants without being aware of it, affecting the pleasantness and the feeling of complexity, they have been defined as “subliminal irregularities” and the 53 musical excerpts as “irregular.” In our recent study (2019) of the same data (used in previous research works), we have proposed a new measure of the complexity of harmony, “regularity,” based on the irregularities in the harmonic progression and other plausible particularities in the musical structure found in previous studies. We have in this study also proposed a list of 10 different particularities for which we were assuming that they are impacting the participant’s perception of complexity in harmony. These ten particularities have been tested in this paper, by extending the analysis in our 53 irregular musical excerpts from harmony to melody. In the examining of melody, we have used the computational model “Information Dynamics of Music” (IDyOM) and two information-theoretic measures: entropy - the uncertainty of the prediction before the next event is heard, and information content - the unexpectedness of an event in a sequence. In order to describe the features of melody in these musical examples, we have used four different viewpoints: pitch, interval, duration, scale degree. The results have shown that the texture of melody (e.g., multiple voices, homorhythmic structure) and structure of melody (e.g., huge interval leaps, syncopated rhythm, implied harmony in compound melodies) in these musical excerpts are impacting the participant’s perception of complexity. High information content values were found in compound melodies in which implied harmonies seem to have suggested additional harmonies, affecting the participant’s perception of the chord progression in harmony by creating a sense of an ambiguous musical structure.

Keywords: entropy and information content, harmony, subliminal (ir)regularity, IDyOM

Procedia PDF Downloads 116
6433 Effect of Gamma Irradiation on the Physicochemical Properties of Starches Extracted from Newly Released Rice Varieties Grown in North Temperate Regions of India

Authors: Bilal Ahmad Ashwar, Asima Shah, S. A. Rather, Asir Gani, S.M. Wani, I.D. Wani, F. A. Masoodi, Adil Gani

Abstract:

Starches isolated from two newly released rice varieties (K-322 & K-448) were subject to irradiation at 0, 5, 10, and 20 kGy doses. Comparative study between native (not irradiated) and irradiated starch samples was carried out to evaluate the changes in physicochemical, morphological and pasting properties due to gamma irradiation. Significant decrease was found in apparent amylose content, pH, swelling power, syneresis, and pasting properties, whereas carboxyl content, water absorption capacity, transmittance and solubility were found to increase with the increase in irradiation dose. Granule morphology of native and irradiated starches under scanning electron microscope revealed that granules were polygonal or irregular in shape. The starch granules were somewhat deformed by gamma irradiation. X-ray diffraction pattern showed A type of pattern in native as well as irradiated starches.

Keywords: rice starch, gamma irradiation, morphological properties, pasting properties, physicochemical properties.

Procedia PDF Downloads 457
6432 Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories

Authors: Saeed Kamarian

Abstract:

In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT.

Keywords: sandwich beam, nanocomposite beam, functionally graded materials, higher-order beam theories, Mori-Tanaka approach

Procedia PDF Downloads 448
6431 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite

Authors: Chen Chuanzhi, Guo Yunyun

Abstract:

The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.

Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna

Procedia PDF Downloads 139
6430 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: electrospinning, characterization, composites, nanofiber

Procedia PDF Downloads 381
6429 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor Under Scour, and Anchor Transportation and Installation (T&I)

Authors: Vinay Kumar Vanjakula, Frank Adam

Abstract:

The generation of electricity through wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, the installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis of the oil and gas industry. For such a floating system, stabilization in harsh conditions is a challenging task. For that, a robust heavy-weight gravity anchor is needed. Transportation of such anchor requires a heavy vessel that increases the cost. To lower the cost, the gravity anchor is designed with ballast chambers that allow the anchor to float while towing and filled with water when lowering to the planned seabed location. The presence of such a large structure may influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes influence the installation process. Also, after installation and under operating conditions, the flow around the anchor may allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scouring on fixed structures (bridges and monopiles) in rivers and oceans have been carried out, and very limited research work on scouring around a bluff-shaped gravity anchor. The objective of this study involves the application of different numerical models to simulate the anchor towing under waves and calm water conditions. Anchor lowering involves the investigation of anchor movements at certain water depths under wave/current. The motions of anchor drift, heave, and pitch is of special focus. The further study involves anchor scour, where the anchor is installed in the seabed; the flow of underwater current around the anchor induces vortices mainly at the front and corners that develop soil erosion. The study of scouring on a submerged gravity anchor is an interesting research question since the flow not only passes around the anchor but also over the structure that forms different flow vortices. The achieved results and the numerical model will be a basis for the development of other designs and concepts for marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM and other similar software.

Keywords: anchor lowering, anchor towing, gravity anchor, computational fluid dynamics, scour

Procedia PDF Downloads 152
6428 Restructurasation of the Concept of Empire in the Social Consciousness of Modern Americans

Authors: Maxim Kravchenko

Abstract:

The paper looks into the structure and contents of the concept of empire in the social consciousness of modern Americans. To construct the model of this socially and politically relevant concept we have conducted an experiment with respondents born and living in the USA. Empire is seen as a historic notion describing such entities as the British empire, the Russian empire, the Ottoman empire and others. It seems that the democratic regime adopted by most countries worldwide is incompatible with imperial status of a country. Yet there are countries which tend to dominate in the contemporary world and though they are not routinely referred to as empires, in many respects they are reminiscent of historical empires. Thus, the central hypothesis of the study is that the concept of empire is cultivated in some states through the intermediary of the mass media though it undergoes a certain transformation to meet the expectations of a democratic society. The transformation implies that certain components which were historically embedded in its structure are drawn to the margins of the hierarchical structure of the concept whereas other components tend to become central to the concept. This process can be referred to as restructuration of the concept of empire. To verify this hypothesis we have conducted a study which falls into two stages. First we looked into the definition of empire featured in dictionaries, the dominant conceptual components of empire are: importance, territory/lands, recognition, independence, authority/power, supreme/absolute. However, the analysis of 100 articles from American newspapers chosen at random revealed that authors rarely use the word «empire» in its basic meaning (7%). More often «empire» is used when speaking about countries, which no longer exist or when speaking about some corporations (like Apple or Google). At the second stage of the study we conducted an associative experiment with the citizens of the USA aged 19 to 45. The purpose of the experiment was to find out the dominant components of the concept of empire and to construct the model of the transformed concept. The experiment stipulated that respondents should give the first association, which crosses their mind, on reading such stimulus phrases as “strong military”, “strong economy” and others. The list of stimuli features various words and phrases associated with empire including the words representing the dominant components of the concept of empire. Then the associations provided by the respondents were classified into thematic clusters. For instance, the associations to the stimulus “strong military” were compartmentalized into three groups: 1) a country with strong military forces (North Korea, the USA, Russia, China); 2) negative impression of strong military (war, anarchy, conflict); 3) positive impression of strong military (peace, safety, responsibility). The experiment findings suggest that the concept of empire is currently undergoing a transformation which brings about a number of changes. Among them predominance of positively assessed components of the concept; emergence of two poles in the structure of the concept, that is “hero” vs. “enemy”; marginalization of any negatively assessed components.

Keywords: associative experiment, conceptual components, empire, restructurasation of the concept

Procedia PDF Downloads 301
6427 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 127
6426 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 585
6425 Photocatalytic Degradation of Methyl Orange by Ag Doped La₂Ti₂O₇

Authors: Hong Zhang

Abstract:

Photocatalytic degradation is an appealing process to remove organic contaminants from industrial wastewater, but usually impeded by less effective photocatalysts. Here, we successfully synthesized Ag doped La₂Ti₂O₇ via a simple sol-gel route for photocatalytic methyl orange (MO) degradation. Their crystal structures, morphology, surface area and optical absorption activity were systematically characterized by X-ray diffraction, scanning electron microscope, BET N₂ adsorption-desorption study, and UV-vis diffuse reflectance spectra. The photocatalytic activity was evaluated by MO photodegradation under a 300 W xenon lamp. The results indicate that the doping of Ag has effectively narrowed the band gap, increased the specific area of La2Ti2O7, and supressed the recombination of photogenerated carriers. Compared with the pristine La₂Ti₂O₇, La₁.₉Ag₀.₁Ti₂O₇-δ revealed a superior performance for MO degradation with a degradation rate of 97% in only 60 min. Also, the pseudo-first order kinetic constant for La₁.₉Ag₀.₁Ti₂O₇-δ is ~ 11 times higher than that of undoped sample. The outstanding performance of Ag modified La₂Ti₂O₇ is probably attributed to the integrated factors. Active species trapping experiments indicated that h+ plays a critical role in MO degradation, while •O₂− has slight effect on the photocatalytic activity and the function of •OH can almost be neglected.

Keywords: Ag doped La₂Ti₂O₇, methyl orange, photodegradation, surface plasmon resonance

Procedia PDF Downloads 91
6424 Synthesis, Characterization and Biological Activites of Azomethine Derivatives

Authors: Lynda Golea, Rachid Chebaki

Abstract:

Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration.

Keywords: azomethine, HOMO, LUMO, RMN, molecular docking

Procedia PDF Downloads 48
6423 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 468
6422 Morphological Study of Sesamoid Bones of Thumb in South Indians

Authors: B. V. Murlimanju, R. Abisshek Balaji, Apoorva Aggarwal, Mangala M. Pai

Abstract:

Background: Since the literature is scarce from the South Indian population about the sesamoid bones of the thumb, the present study was undertaken. The objective of the present study was to figure out the muscle of the thumb which contain these sesamoid bones. Methods: The present study included 25 cadaveric thumbs, which were obtained from the anatomy laboratory of our institution. Thumbs were studied for the prevalence of sesamoid bones at the metacarpophalangeal and interphalangeal joints. The muscle which contain these sesamoid bones were identified. Results: The present study observed that, there were 2 sesamoid bones (92%) at the metacarpophalangeal joint of the thumb each at its medial and lateral aspect. The medial sesamoid bone was found inside the adductor pollicis muscle and lateral one was found either in the flexor pollicis brevis muscle or abductor pollicis brevis muscle. However, among the 25 thumbs being studied, 2 thumbs (8%) had solitary sesamoid bone. The interphalangeal joint of the thumb exhibited only one sesamoid bone at the median plane. Conclusion: The morphological data of the present study from the South Indians can be used as a database, which is enlightening to the operating hand surgeon and radiologist.

Keywords: morphology, muscles, sesamoid bones, thumb

Procedia PDF Downloads 191
6421 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 259
6420 An Integrated Framework for Wind-Wave Study in Lakes

Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung

Abstract:

The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.

Keywords: wave modelling, wind-wave, extreme value analysis, marina

Procedia PDF Downloads 67
6419 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis

Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie

Abstract:

Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.

Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation

Procedia PDF Downloads 64
6418 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 423
6417 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 96
6416 Contextual Senses of Ambiguous Words Based on Cognitive Semantics

Authors: Madhavi

Abstract:

All linguistic units are context-dependent. They occur in particular settings, from which they derive much of their import, and are recognized by speakers as distinct entities only through a process of abstraction. Most of the words have several concepts associated with them and convey a number of meanings in different contexts in any language. For instance, there are different uses of the word good as an adjective from English. The adjective good expresses many senses like (1) ‘high quality of someone or something’ (2) ‘efficient’ (3) ‘virtuous’ (4) ‘reliable’ etc. These senses will be analyzed by using cognitive semantics framework. The context has the power to insulate one meaning from all the other meanings in communication. This paper will provide a cognitive semantic analysis. The basic tenet of cognitive semantics is the sense of a word is the way we conceptualize it. Our conceptualization is based on the physical experience we go through. Cognitive semantics tries to capture this conceptualization in terms of some categories like schema, frame, and domain. Cognitive semantics is a subfield of cognitive linguistics. Cognitive linguistics studies the language creation, learning, and usage by the reference to human cognition. The semantic structure is conceptual structure which is related to the concepts which are the elements of reason and constitute the meanings of words and linguistic expressions. Cognitive semantics studies how our mind works for the meaning of any word and how it perceives meaning from the environment through senses and works to map with the knowledge which already exists in our mind through experience. In the present paper, the senses are further classified into some categories.

Keywords: cognitive, contexts, semantics, senses

Procedia PDF Downloads 204
6415 Modeling a Sustainable City in the Twenty-First Century: A Case Study of Ibadan Oyo State Nigeria

Authors: K. J. Jegede, O. O. Odekunle

Abstract:

The challenges facing government at all levels in the area of urban development are two folds, first is how to provide basic services for urban dwellers especially the urban poor and second, how to make cities and towns as model of good places for economic development. The key ingredients and catalysts for achieving these goals are strong and virile institutional capacity, urban infrastructure and a supportive urban policy framework. The government at all levels have been upgrading and expanding city infrastructure and services in Ibadan, the state capital to support sustainable economic development of the city, particularly in the areas of electricity, neighbourhood, solid waste management, transport, water supply, education, health facilities and markets developments to discourage street trading. This paper attempts to present Ibadan in the millennium as 'a model of a sustainable city'. A planned development strategy that had sustained the growth of the city from a war camp in the 19th century to a cosmopolitan city in the 21st century with the potential to become a megacity. The presentation examines, among others, the physical structure and population density of Ibadan city, the challenges of economic development, the development of urban infrastructure and services in Ibadan metropolitan area. The paper submitted by mapping out a strategy to achieve sustainable development of Ibadan city.

Keywords: megacity, physical structure, sustainable city, urban infrastructure

Procedia PDF Downloads 288
6414 Concentration Conditions of Industrially Valuable Accumulations of Gold Ore Mineralization of the Tulallar Ore-Bearing Structure

Authors: Narmina Ismayilova, Shamil Zabitov, Fuad Askerzadeh, Raqif Seyfullayev

Abstract:

Tulallar volcano-tectonic structure is located in the conjugation zone of the Gekgel horst-uplift, Dashkesan, and Agzhakend synclinorium. Regionally, these geological structures are an integral part of the Lok-Karabakh island arc system. Tulallar field is represented by three areas (Central, East, West). The area of the ore field is located within a partially eroded oblong volcano-tectonic depression. In the central part, the core is divided by the deep Tulallar-Chiragdara-Toganalinsky fault with arcuate fragments of the ring structure into three blocks -East, Central, and West, within which the same areas of the Tulallar field are located. In general, for the deposit, the position of both ore-bearing vein zones and ore-bearing blocks is controlled by fractures of two systems - sub-latitudinal and near-meridional orientations. Mineralization of gold-sulfide ores is confined to these zones of disturbances. The zones have a northwestern and northeastern (near-meridian) strike with a steep dip (70-85◦) to the southwest and southeast. The average thickness of the zones is 35 m; they are traced for 2.5 km along the strike and 500 m along with the dip. In general, for the indicated thickness, the zones contain an average of 1.56 ppm Au; however, areas enriched in noble metal are distinguished within them. The zones are complicated by postore fault tectonics. Gold mineralization is localized in the Kimmeridgian volcanics of andesi-basalt-porphyritic composition and their vitrolithoclastic, agglomerate tuffs, and tuff breccias. For the central part of the Tulallar ore field, a map of geochemical anomalies was built on the basis of analysis data carried out in an international laboratory. The total gold content ranges from 0.1-5 g/t, and in some places, even more than 5 g/t. The highest gold content is observed in the monoquartz facies among the secondary quartzites with quartz veins. The smallest amount of gold content appeared in the quartz-kaolin facies. And also, anomalous values of gold content are located in the upper part of the quartz vein. As a result, an en-echelon arrangement of anomalous values of gold along the strike and dip was revealed.

Keywords: geochemical anomaly, gold deposit, mineralization, Tulallar

Procedia PDF Downloads 178
6413 A Study on Ideals and Prime Ideals of Sub-Distributive Semirings and Its Applications to Symmetric Fuzzy Numbers

Authors: Rosy Joseph

Abstract:

From an algebraic point of view, Semirings provide the most natural generalization of group theory and ring theory. In the absence of additive inverse in a semiring, one had to impose a weaker condition on the semiring, i.e., the additive cancellative law to study interesting structural properties. In many practical situations, fuzzy numbers are used to model imprecise observations derived from uncertain measurements or linguistic assessments. In this connection, a special class of fuzzy numbers whose shape is symmetric with respect to a vertical line called the symmetric fuzzy numbers i.e., for α ∈ (0, 1] the α − cuts will have a constant mid-point and the upper end of the interval will be a non-increasing function of α, the lower end will be the image of this function, is suitable. Based on this description, arithmetic operations and a ranking technique to order the symmetric fuzzy numbers were dealt with in detail. Wherein it was observed that the structure of the class of symmetric fuzzy numbers forms a commutative semigroup with cancellative property. Also, it forms a multiplicative monoid satisfying sub-distributive property.In this paper, we introduce the algebraic structure, sub-distributive semiring and discuss its various properties viz., ideals and prime ideals of sub-distributive semiring, sub-distributive ring of difference etc. in detail. Symmetric fuzzy numbers are visualized as an illustration.

Keywords: semirings, subdistributive ring of difference, subdistributive semiring, symmetric fuzzy numbers

Procedia PDF Downloads 196
6412 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers

Authors: T. Abohalkuma, J. Telegdi

Abstract:

Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.

Keywords: nanolayers, corrosion, phosphonic acids, coatings

Procedia PDF Downloads 161