Search results for: solar architecture
1052 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4511051 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3921050 Modular Power Bus for Space Vehicles (MPBus)
Authors: Eduardo Remirez, Luis Moreno
Abstract:
The rapid growth of the private satellite launchers sector is leading the space race. Hence, with the privatization of the sector, all the companies are racing for a more efficient and reliant way to set satellites in orbit. Having detected the current needs for power management in the launcher vehicle industry, the Modular Power Bus is proposed as a technology to revolutionize power management in current and future Launcher Vehicles. The MPBus Project is committed to develop a new power bus architecture combining ejectable batteries with the main bus through intelligent nodes. These nodes are able to communicate between them and a battery controller using an improved, data over DC line technology, expected to reduce the total weight in two main areas: improving the use of the batteries and reducing the total weight due to harness. This would result in less weight for each launch stage increasing the operational satellite payload and reducing cost. These features make the system suitable for a number of launchers.Keywords: modular power bus, Launcher vehicles, ejectable batteries, intelligent nodes
Procedia PDF Downloads 4801049 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1641048 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2911047 Detecting Heartbeat Architectural Tactic in Source Code Using Program Analysis
Authors: Ananta Kumar Das, Sujit Kumar Chakrabarti
Abstract:
Architectural tactics such as heartbeat, ping-echo, encapsulate, encrypt data are techniques that are used to achieve quality attributes of a system. Detecting architectural tactics has several benefits: it can aid system comprehension (e.g., legacy systems) and in the estimation of quality attributes such as safety, security, maintainability, etc. Architectural tactics are typically spread over the source code and are implicit. For large codebases, manual detection is often not feasible. Therefore, there is a need for automated methods of detection of architectural tactics. This paper presents a formalization of the heartbeat architectural tactic and a program analytic approach to detect this tactic in source code. The experiment of the proposed method is done on a set of Java applications. The outcome of the experiment strongly suggests that the method compares well with a manual approach in terms of its sensitivity and specificity, and far supersedes a manual exercise in terms of its scalability.Keywords: software architecture, architectural tactics, detecting architectural tactics, program analysis, AST, alias analysis
Procedia PDF Downloads 1611046 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique
Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra
Abstract:
Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying
Procedia PDF Downloads 2471045 Astronomical Panels of Measuring and Dividing Time in Ancient Egypt
Authors: Mohamed Saeed Ahmed Salman
Abstract:
The ancient Egyptians used the stars to measure time or, in a more precise sense, as one of the astronomical means of measuring time. These methods differed throughout the historical ages. They began with simple observations of observing astronomical phenomena and watching them, such as observing the movements of the stars in the sky. The year, to know the days, nights, and other means used to help set the time when the sky overcast, and so the researcher tries through archaeological evidence to demonstrate the knowledge of the ancient Egyptian stars of heaven, and movements through the first pre-history. It is not believed that the astronomical information possessed by the Egyptian was limited, and simple, it was reaching a level of almost optimal in terms of importance, and the goal he wanted to reach the ancient Egyptian, and also help him to know the time, and the passage of time; which ended in finally trying to find a system of timing and calculation of time. It was noted that there were signs that the stellar creed was known, and prosperous, especially since the pre-family ages, and this is evident on the inscriptions that come back to that period. The Egyptian realized that some of the stars remain visible at night, The ancient Egyptian was familiar with the daily journey of the stars. This is what was adopted in many paragraphs of the texts of the pyramids and its references to the rise of the deceased king of the heavenly world between the stars of the eternal sky. It was noted that the ancient Egyptian link between the doctrine of the star, we find that the public The lunar was known to the ancient Egyptians, and sang it for two years, and the stellar solar; but it was based on the appearance of the star Sirius, and this is the first means used to measure time and know the calendar stars.Keywords: ancient Egyptian, astronomical panels, Egyptian, astronomical
Procedia PDF Downloads 241044 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 891043 Gross and Histological Studies on the Thymus of the Grasscutter (Thyronomys swinderianus)
Authors: R. M. Korzerzer, J. O. Hambolu, S. O. Salami, S. B. Oladele
Abstract:
Twelve apparently healthy grasscutters between the ages of three and seven months were used for this study. The animals were purchased from local breeders in Oturkpo, Benue state, Nigeria and transported to the research laboratory in the Department of Veterinary Anatomy, Ahmadu Bello University, Zaria by means of constructed cages. The animals were divided into three groups according to their ages and acclimatised. Sacrifice was done using chloroform gaseous inhalation anaesthesia. An incision was made at the neck region and the thymus located and identified by its prominent bilateral nature. Extirpated thymuses from each animal were immediately weighed and fixed in Bouin’s fluid for 48 hours. The tissues were then prepared using standard methods. Haematoxilin and eosin was used for routine histology and Rhodamine B aniline methylene blue was for studying the architecture of the elastic and reticular fibres of the thymus. Grossly, the thymus appeared as a bilateral organ on either side of the thoracic midline. The organ size decreased consistently as the animals advanced in age. Mean ± SEM values for thymic weights were 1.23 ± 0.048 g, 0.53 ± 0.019 g and 0.30 ± 0.042 g at three, five and seven months of age respectively.Keywords: gross, histological, thymus, grasscutter
Procedia PDF Downloads 7691042 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System
Authors: Rajat Raj, Rohini S. Hallikar
Abstract:
The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion
Procedia PDF Downloads 1751041 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance
Authors: Yasser Aldali
Abstract:
The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact
Procedia PDF Downloads 4511040 Structural Analysis on the Composition of Video Game Virtual Spaces
Authors: Qin Luofeng, Shen Siqi
Abstract:
For the 58 years since the first video game came into being, the video game industry is getting through an explosive evolution from then on. Video games exert great influence on society and become a reflection of public life to some extent. Video game virtual spaces are where activities are taking place like real spaces. And that’s the reason why some architects pay attention to video games. However, compared to the researches on the appearance of games, we observe a lack of theoretical comprehensive on the construction of video game virtual spaces. The research method of this paper is to collect literature and conduct theoretical research about the virtual space in video games firstly. And then analogizing the opinions on the space phenomena from the theory of literature and films. Finally, this paper proposes a three-layer framework for the construction of video game virtual spaces: “algorithmic space-narrative space players space”, which correspond to the exterior, expressive, affective parts of the game space. Also, we illustrate each sub-space according to numerous instances of published video games. Hoping this writing could promote the interactive development of video games and architecture.Keywords: video game, virtual space, narrativity, social space, emotional connection
Procedia PDF Downloads 2701039 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium
Authors: Shyam Ranjan Kumar, Shashikant Rajpal
Abstract:
Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe
Procedia PDF Downloads 1941038 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.Keywords: apartment housing, machine learning, multi-objective optimization, performance prediction
Procedia PDF Downloads 4821037 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh
Procedia PDF Downloads 2851036 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World
Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor
Abstract:
In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities
Procedia PDF Downloads 261035 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios
Authors: Nour Wehbe
Abstract:
The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach
Procedia PDF Downloads 2481034 Annotation Ontology for Semantic Web Development
Authors: Hadeel Al Obaidy, Amani Al Heela
Abstract:
The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system.Keywords: semantic web services, software engineering, semantic library, knowledge representation, ontology
Procedia PDF Downloads 1741033 The Impact of Artificial Intelligence on Construction Engineering
Authors: Mina Fawzy Ishak Gad Elsaid
Abstract:
There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 461032 The Impact of Artificial Intelligence on Construction Engineering
Authors: Haneen Joseph Habib Yeldoka
Abstract:
There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 421031 Rethinking Sustainability: Towards an Open System Approach
Authors: Fatemeh Yazdandoust
Abstract:
Sustainability is a growing concern in architecture and urban planning due to the environmental impact of the built environment. Ecological challenges persist despite the proliferation of sustainable design strategies, prompting a critical reevaluation of existing approaches. This study examines sustainable design practices, focusing on the origins and processes of production, environmental impact, and socioeconomic dimensions. It also discusses ‘cleantech’ initiatives, which often prioritize profitability over ecological stewardship. The study advocates for a paradigm shift in urban design towards greater adaptability, complexity, and inclusivity, embracing porosity, incompleteness, and seed planning. This holistic approach emphasizes citizen participation and bottom-up interventions, reimagining urban spaces as evolving ecosystems. The study calls for a reimagining of sustainability that transcends conventional green design concepts, promoting a more resilient and inclusive built environment through an open system approach grounded in adaptability, diversity, and equity principles.Keywords: sustainability, clean-tech, open system design, sustainable design
Procedia PDF Downloads 631030 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 141029 The Design Inspired by Phra Maha Chedi of King Rama I-IV at Wat Phra Chetuphon Vimolmangklaram Rajwaramahaviharn
Authors: Taechit Cheuypoung
Abstract:
The research will focus on creating pattern designs that are inspired by the pagodas, Phra Maha Chedi of King Rama I-IV, that are located in the temple, Wat Phra Chetuphon Vimolmangklararm Rajwaramahaviharn. Different aspects of the temple were studied, including the history, architecture, significance of the temple, and techniques used to decorate the pagodas, Phra Maha Chedi of King Rama I-IV. Moreover, composition of arts and the form of pattern designs which all led to the outcome of four Thai application pattern. The four patterns combine Thai traditional design with international scheme, however, maintaining the distinctiveness of the glaze mosaic tiles of each Phra Maha Chedi. The patterns consist of rounded and notched petal flowers, leaves and vine, and various square shapes, and original colors which are updated for modernity. These elements are then grouped and combined with new techniques, resulting in pattern designs with modern aspects and simultaneously reflecting the charm and the aesthetic of Thai craftsmanship which are eternally embedded in the designs.Keywords: Chedi, Pagoda, pattern, Wat
Procedia PDF Downloads 3891028 Modes of Seeing in Interactive Exhibitions: A Study on How Technology Can Affect the Viewer and Transform the Exhibition Spaces
Authors: Renata P. Lopes
Abstract:
The current art exhibit scenario presents a multitude of visualization features deployed in experiences that instigate a process of art production and design. The exhibition design through multimedia devices - from the audiovisual to the touch screen - has become a medium from which art can be understood and contemplated. Artistic practices articulated, during the modern period, the spectator's perception in the exhibition space, often challenging the architecture of museums and galleries. In turn, the museum institution seeks to respond to the challenge of welcoming the viewer whose experience is mediated by technological artifacts. When the beholder, together with the technology, interacts with the exhibition space, important displacements happen. In this work, we will analyze the migrations of the exhibition space to the digital environment through mobile devices triggered by the viewer. Based not on technological determinism, but on the conditions of the appearance of this spectator, this work is developed, with the aim of apprehending the way in which technology demarcates the differences between what the spectator was and what becomes in the contemporary atmosphere of the museums and galleries. These notions, we believe, will contribute to the formation of an exhibition design space in conformity with this participant.Keywords: exhibition, museum, exhibition design, digital media
Procedia PDF Downloads 1391027 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites
Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran
Abstract:
The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors
Procedia PDF Downloads 961026 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries
Authors: Bruno Vilić Belina, Ivan Župan
Abstract:
Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration, and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in service level agreements (SLAs), customer relationship management (CRM) relations, trends, and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.Keywords: cybersecurity, critical infrastructure, smart industries, digital platform
Procedia PDF Downloads 1091025 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design
Authors: Elvan Ender, Murat Zencirkıran
Abstract:
One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.Keywords: Bursa, flower characteristics, natural plants, planting design
Procedia PDF Downloads 2661024 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links
Authors: Alaa Abdullah Altaee
Abstract:
This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication
Procedia PDF Downloads 1231023 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.Keywords: blockchain, digital multi-utility, end use, demand forecasting
Procedia PDF Downloads 172