Search results for: online learning higher-order learning attributes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9854

Search results for: online learning higher-order learning attributes

7634 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 375
7633 Proposal for a Mobile Application with Augmented Reality to Improve School Interest

Authors: Mamani Acurio Alex, Aguilar Alonso Igor

Abstract:

The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.

Keywords: augmented reality, Vuforia, school interest, learning

Procedia PDF Downloads 85
7632 Introducing the Concept of Sustainable Learning: Redesigning the Social Studies and Citizenship Education Curriculum in the Context of Saudi Arabia

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

Sustainable human development is an essential component of a sustainable economic, social and environmental development. Addressing sustainable learning only through the addition of new teaching methods, or embedding certain approaches, is not sufficient on its own to support the goals of sustainable human development. This research project seeks to explore how the process of redesigning the current principles of curriculum based on the concept of sustainable learning could contribute to preparing a citizen who could later contribute towards sustainable human development. Multiple qualitative methodologies were employed in order to achieve the aim of this study. The main research methods were teachers’ field notes, artefacts, informal interviews (unstructured interview), a passive participant observation, a mini nominal group technique (NGT), a weekly diary, and weekly meeting. The study revealed that the integration of a curriculum for sustainable development, in addition to the use of innovative teaching approaches, highly valued by students and teachers in social studies’ sessions. This was due to the fact that it created a positive atmosphere for interaction and aroused both teachers and students’ interest. The content of the new curriculum also contributed to increasing students’ sense of shared responsibility through involving them in thinking about solutions for some global issues. This was carried out through addressing these issues through the concept of sustainable development and the theory of Thinking Activity in a Social Context (TASC). Students had interacted with sustainable development sessions intellectually and they also practically applied it through designing projects and cut-outs. Ongoing meetings and workshops to develop work between both the researcher and the teachers, and by the teachers themselves, played a vital role in implementing the new curriculum. The participation of teachers in the development of the project through working papers, exchanging experiences and introducing amendments to the students' environment was also critical in the process of implementing the new curriculum. Finally, the concept of sustainable learning can contribute to the learning outcomes much better than the current curriculum and it can better develop the learning objectives in educational institutions.

Keywords: redesigning, social studies and citizenship education curriculum, sustainable learning, thinking activity in a social context

Procedia PDF Downloads 231
7631 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 137
7630 The Development of Chinese-English Homophonic Word Pairs Databases for English Teaching and Learning

Authors: Yuh-Jen Wu, Chun-Min Lin

Abstract:

Homophonic words are common in Mandarin Chinese which belongs to the tonal language family. Using homophonic cues to study foreign languages is one of the learning techniques of mnemonics that can aid the retention and retrieval of information in the human memory. When learning difficult foreign words, some learners transpose them with words in a language they are familiar with to build an association and strengthen working memory. These phonological clues are beneficial means for novice language learners. In the classroom, if mnemonic skills are used at the appropriate time in the instructional sequence, it may achieve their maximum effectiveness. For Chinese-speaking students, proper use of Chinese-English homophonic word pairs may help them learn difficult vocabulary. In this study, a database program is developed by employing Visual Basic. The database contains two corpora, one with Chinese lexical items and the other with English ones. The Chinese corpus contains 59,053 Chinese words that were collected by a web crawler. The pronunciations of this group of words are compared with words in an English corpus based on WordNet, a lexical database for the English language. Words in both databases with similar pronunciation chunks and batches are detected. A total of approximately 1,000 Chinese lexical items are located in the preliminary comparison. These homophonic word pairs can serve as a valuable tool to assist Chinese-speaking students in learning and memorizing new English vocabulary.

Keywords: Chinese, corpus, English, homophonic words, vocabulary

Procedia PDF Downloads 181
7629 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 374
7628 E-Book Market In Vietnam: Great Potential, Many Barriers

Authors: Zakir Hossain

Abstract:

Nowadays reading e-books on laptops, smartphones, and tablets have become a new leisure activity for Vietnamese youth. Since 2011 the copyrighted e-book market began to develop in Vietnam with the participation of five local enterprises. Over the last five years, thousands of e-books were published including the first online early education book series for children from 0 to 6 years old. Research shows that 61% Vietnamese find reading e-books is comfortable, and 45% feel convenient buying books online. More than half of the Vietnamese consider reading online far better than buying printed books, and surprisingly people over age 30 desire reading online while those under 18 prefer reading printed books. Hence with a market of more than 40 million regular internet users including 22 million smartphone users, Vietnam has ample opportunities to develop the e-book market and contribute a great deal to the diversity of the local reading culture which is essential for Building a Lifelong Learning Society, a state ambition of Vietnam by 2020. However, the e-book market in Vietnam is still in its infancy and is growing far too slowly than e-book producers had expected. All five e-book enterprises are facing numerous challenges. While the big profit that e-book technology can bring has been clearly recognised in other countries, e-books in Vietnam only make up less than 1% share of the book market. The objective of the study is to identify the difficulties and barriers to the development of the e-book market in Vietnam through an extensive literature review available in English. The study revealed that illegal e-books due to copyright infringement and an inconvenient payment system to purchase e-books are the major obstacles. The great potential of e-books in Vietnam is a reality but requires government enforcement of copyright protection laws, a new area of focus for the e-book market. Furthermore, Vietnamese readers should change their habits from using free and illegal e-books to develop the e-publishing industry in Vietnam.

Keywords: copyright, e-book, e-book reading, e-publishing, Vietnam

Procedia PDF Downloads 225
7627 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 27
7626 Lived Experiences of Physical Education Teachers in the New Normal: A Consensual Qualitative Research

Authors: Karl Eddie T. Malabanan

Abstract:

Due to the quick transmission and public health risk of coronavirus disease, schools and universities have shifted to distant learning. Teachers everywhere were forced to shift gears instantly in order to react to the needs of students and families using synchronous and asynchronous virtual teaching. This study aims to explore the lived experiences of physical education teachers who are currently experiencing remote learning in teaching during the time of the COVID-19 pandemic. Specifically, the challenges that the physical education teachers encounter during remote learning and teaching. The participants include 12 physical education teachers who have taught in higher education institutions for at least five years. The researcher utilized qualitative research; specifically, the researcher used Consensual Qualitative Research (CQR). The results of this study showed that there are five categories for the Lived Experiences of Physical Education Teachers with thirty-one subcategories. This study revealed that physical education teachers experienced very challenging situations during the time of the pandemic. It also found that students had challenges in the abrupt transition from traditional to virtual learning classes, but it also showed that students are tenacious and willing to face any adversity. The researcher also finds that teachers are mentally drained during this time. Furthermore, one of the main focuses for the teachers should be on improving their well-being. And lastly, to cope with the challenges, teachers employ socializing to relieve tension and anxiety.

Keywords: lived experiences, consensual qualitative research, pandemic, education

Procedia PDF Downloads 92
7625 A Survey of Online User Perspectives and Age Profile in an Undergraduate Fundamental Business Technology Course

Authors: Danielle Morin, Jennifer D. E. Thomas, Raafat G. Saade, Daniela Petrachi

Abstract:

Over the past few decades, more and more students choose to enroll in online classes instead of attending in-class lectures. While past studies consider students’ attitudes towards online education and how their grades differed from in-class lectures, the profile of the online student remains a blur. To shed light on this, an online survey was administered to about 1,500 students enrolled in an undergraduate Fundamental Business Technology course at a Canadian University. The survey was comprised of questions on students’ demographics, their reasons for choosing online courses, their expectations towards the course, the communication channels they use for the course with fellow students and with the instructor. This paper focused on the research question: Do the perspectives of online students concerning the online experience, in general, and in the course in particular, differ according to age profile? After several statistical analyses, it was found that age does have an impact on the reasons why students select online classes instead of in-class. For example, it was found that the perception that an online course might be easier than in-class delivery was a more important reason for younger students than for older ones. Similarly, the influence of friends is much more important for younger students, than for older students. Similar results were found when analyzing students’ expectation about the online course and their use of communication tools. Overall, the age profile of online users had an impact on reasons, expectations and means of communication in an undergraduate Fundamental Business Technology course. It is left to be seen if this holds true across other courses, graduate and undergraduate.

Keywords: communication channels, fundamentals of business technology, online classes, pedagogy, user age profile, user perspectives

Procedia PDF Downloads 249
7624 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 164
7623 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 536
7622 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 23
7621 Smart Online Library Catalog System with Query Expansion for the University of the Cordilleras

Authors: Vincent Ballola, Raymund Dilan, Thelma Palaoag

Abstract:

The Smart Online Library Catalog System with Query Expansion seeks to address the low usage of the library because of the emergence of the Internet. Library users are not accustomed to catalog systems that need a query to have the exact words without any mistakes for decent results to appear. The graphical user interface of the current system has a rather skewed learning curve for users to adapt with. With a simple graphical user interface inspired by Google, users can search quickly just by inputting their query and hitting the search button. Because of the query expansion techniques incorporated into the new system such as stemming, thesaurus search, and weighted search, users can have more efficient results from their query. The system will be adding the root words of the user's query to the query itself which will then be cross-referenced to a thesaurus database to search for any synonyms that will be added to the query. The results will then be arranged by the number of times the word has been searched. Online queries will also be added to the results for additional references. Users showed notable increases in efficiency and usability due to the familiar interface and query expansion techniques incorporated in the system. The simple yet familiar design led to a better user experience. Users also said that they would be more inclined in using the library because of the new system. The incorporation of query expansion techniques gives a notable increase of results to users that in turn gives them a wider range of resources found in the library. Used books mean more knowledge imparted to the users.

Keywords: query expansion, catalog system, stemming, weighted search, usability, thesaurus search

Procedia PDF Downloads 386
7620 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 52
7619 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 197
7618 From the Bright Lights of the City to the Shadows of the Bush: Expanding Knowledge through a Case-Based Teaching Approach

Authors: Henriette van Rensburg, Betty Adcock

Abstract:

Concern about the lack of knowledge of quality teaching and teacher retention in rural and remote areas of Australia, has caused academics to improve pre-service teachers’ understanding of this problem. The participants in this study were forty students enrolled in an undergraduate educational course (EDO3341 Teaching in rural and remote communities) at the University of Southern Queensland in Toowoomba in 2012. This study involved an innovative case-based teaching approach in order to broaden their generally under-informed understanding of teaching in a rural and remote area. Three themes have been identified through analysing students’ critical reflections: learning expertise, case-based learning support and authentic learning. The outcomes identified the changes in pre-service teachers’ understanding after they have deepened their knowledge of the realities of teaching in rural and remote areas.

Keywords: rural and remote education, case based teaching, innovative education approach, higher education

Procedia PDF Downloads 490
7617 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 127
7616 Introduction of a Medicinal Plants Garden to Revitalize a Botany Curriculum for Non-Science Majors

Authors: Rosa M. Gambier, Jennifer L. Carlson

Abstract:

In order to revitalize the science curriculum for botany courses for non-science majors, we have introduced the use of the medicinal plants into a first-year botany course. We have connected the use of scientific method, scientific inquiry and active learning in the classroom with the study of Western Traditional Medical Botany. The students have researched models of Botanical medicine and have designed a sustainable medicinal plants garden using native medicinal plants from the northeast. Through the semester, the students have researched their chosen species, planted seeds in the college greenhouse, collected germination ratios, growth ratios and have successfully produced a beginners medicinal plant garden. Phase II of the project will be to tie in SCCCs community outreach goals by involving the public in the expanded development of the garden as a way of sharing learning about medicinal plants and traditional medicine outside the classroom.

Keywords: medicinal plant garden, botany curriculum, active learning, community outreach

Procedia PDF Downloads 303
7615 Product Line Design with Customization in the Presence of Demand Uncertainty

Authors: Parisa Bagheri Tookanlou

Abstract:

In this paper, we analyze a product line design problem faced by a manufacturing firm where the product line consists of a customized product in addition to a standard product and is offered in a market in which customers are heterogeneous on aesthetic attributes of the product. The customization level of a product is defined by the fraction of aesthetic attributes of the product that the manufacturer chooses to customize. In contrast to the existing literature on product line design that predominantly assumes deterministic demand, we consider the presence of demand uncertainty and frame the product line design problem in a single period (news vendor) setting. We examine the effect of demand uncertainty on product line decisions. Furthermore, we also examine how product line decisions are influenced by channel structure. While we use the centralized channel as a benchmark, we consider the decentralized dual channel where the customized product is sold through an online channel owned by the manufacturer and the standard product is sold through a retailer. We introduce a supply contract between the manufacturer and the retailer for improving channel efficiency and coordinate the distribution channel.

Keywords: product line design, demand uncertainty, customization level, distribution channel

Procedia PDF Downloads 183
7614 Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake

Authors: Mehrnoosh Mirzaei

Abstract:

Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction.

Keywords: disaster education, earthquake sign marks, learning table, matching card, risk reduction behavior

Procedia PDF Downloads 257
7613 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior

Authors: Chaithanya Pothuganti

Abstract:

Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.

Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior

Procedia PDF Downloads 309
7612 An E-coaching Methodology for Higher Education in Saudi Arabia

Authors: Essam Almuhsin, Ben Soh, Alice Li, Azmat Ullah

Abstract:

It is widely accepted that university students must acquire new knowledge, skills, awareness, and understanding to increase opportunities for professional and personal growth. The study reveals a significant increase in users engaging in e-coaching activities and a growing need for it during the COVID-19 pandemic. The paper proposes an e-coaching methodology for higher education in Saudi Arabia to address the need for effective coaching in the current online learning environment.

Keywords: role of e-coaching, e-coaching in higher education, Saudi higher education environment, e-coaching methodology, the importance of e-coaching

Procedia PDF Downloads 104
7611 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: learning activity, mathematics, motivation, student

Procedia PDF Downloads 415
7610 A Virtual Reality Cybersecurity Training Knowledge-Based Ontology

Authors: Shaila Rana, Wasim Alhamdani

Abstract:

Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may promote these aforementioned variables. However, a methodological approach and framework have not yet been created to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes to the author’s best knowledge. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts unique to developing VR training to create a relevant methodology for creating VR cybersecurity training modules. The outcome of this research is to create a methodology that is relevant and useful for designing VR cybersecurity training modules.

Keywords: virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology

Procedia PDF Downloads 287
7609 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor

Authors: Cristian Crespo

Abstract:

Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.

Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting

Procedia PDF Downloads 203
7608 Explainable Deep Learning for Neuroimaging: A Generalizable Approach for Differential Diagnosis of Brain Diseases

Authors: Nighat Bibi, Jane Courtney, Kathleen M. Curran

Abstract:

The differential diagnosis of brain diseases by magnetic resonance imaging (MRI) is a crucial step in the diagnostic process, and deep learning (DL) has the potential to significantly improve the accuracy and efficiency of these diagnoses. This study focuses on creating an ensemble learning (EL) model that utilizes the ResNet50, DenseNet121, and EfficientNetB1 architectures to concurrently and accurately classify various brain conditions from MRI images. The proposed ensemble learning model identifies a range of brain disorders that encompass different types of brain tumors, as well as multiple sclerosis. The proposed model trained on two open source datasets, consisting of MRI images of glioma, meningioma, pituitary tumors, and multiple sclerosis. Central to this research is the integration of Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability, aligning with the growing emphasis on explainable AI (XAI) in medical imaging. The application of Grad-CAM improves the transparency of the decisionmaking process of the model, which is vital for clinical acceptance and trust in AI-assisted diagnostic tools. The EL model achieved an impressive 99.84% accuracy in classifying these various brain conditions, demonstrating its potential as a versatile and effective tool for differential diagnosis in neuroimaging. The model’s ability to distinguish between multiple brain diseases underscores its significant potential in the field of medical imaging. Additionally, Grad-CAM visualizations provide deeper insights into the neural network’s reasoning, contributing to a more transparent and interpretable AIdriven diagnostic process in neuroimaging.

Keywords: brain tumour, differential diagnosis, ensemble learning, explainability, grad-cam, multiple sclerosis

Procedia PDF Downloads 7
7607 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher

Authors: Ebtisam Alqahtani

Abstract:

The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practice

Keywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR

Procedia PDF Downloads 126
7606 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities

Authors: Omran Alharbi, Victor Lally

Abstract:

The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.

Keywords: LMS, factors, KSA, teachers

Procedia PDF Downloads 128
7605 Assessing the Attitude and Belief towards Online Advertisement in Pakistan and China Mainland

Authors: Prih Bukhari

Abstract:

The purpose of the proposed paper is to determine if the perception of online advertisement formed due to attitude and belief vary among two different countries or not. Specifically, it seeks to find out how people from China and Pakistan perceive online advertisement. Public attitude and belief towards advertising have been a focus of attention to explore a path to a better strategy of advertising. The ‘belief’ factor was analyzed through 4 items, i.e., product information, entertainment, and increase in economy’ whereas, the ‘attitude’ factor was analyzed thorough questions based on 4 items, i.e. ‘overall, I consider online advertising a good thing’; 'overall, I like online advertising’; ‘'I consider online advertising very essential’; and 'I would describe my overall attitude toward online advertising very favorably’. As such, it provides theoretical basis to explain similarities and differences of beliefs and attitude towards advertising across the two countries. Given its mixed method approach, both quantitative and qualitative method is used to carry out research. A questionnaire-based survey and focus group interviews were conducted. The sample size was of 500 participants. For analysis survey copies were then collected from which 497 were received whereas focus group interviews were collected from both nations. The findings showed that the belief factor among both countries had no significant relation with the perception of online advertisement. However, the attitude had a significant relation with the perception about online advertisement. Also it was observed that despite of different backgrounds, perception about online advertisement based on beliefs and attitude were found largely to be similar. Implications and future studies are provided.

Keywords: attitude, belief, online advertisement, perception

Procedia PDF Downloads 149