Search results for: morphology of the Kura river delta
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2664

Search results for: morphology of the Kura river delta

444 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys

Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso

Abstract:

Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.

Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys

Procedia PDF Downloads 119
443 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 113
442 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring

Authors: Mamoon Masud, Suleman Mazhar

Abstract:

Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.

Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking

Procedia PDF Downloads 128
441 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 86
440 Specific Language Impairment: Assessing Bilingual Children for Identifying Children with Specific Language Impairment (SLI)

Authors: Manish Madappa, Madhavi Gayathri Raman

Abstract:

The primary vehicle of human communication is language. A breakdown occurring in any aspect of communication may lead to frustration and isolation among the learners and the teachers. Over seven percent of the population in the world currently experience limitations and those children who exhibit a deviant/deficient language acquisition curve even when being in a language rich environment as their peers may be at risk of having a language disorder or language impairment. The difficulty may be in the word level [vocabulary/word knowledge] and/or the sentence level [syntax/morphology) Children with SLI appear to be developing normally in all aspects except for their receptive and/or expressive language skills. Thus, it is utmost importance to identify children with or at risk of SLI so that an early intervention can foster language and social growth, provide the best possible learning environment with special support for language to be explicitly taught and a step in providing continuous and ongoing support. The present study looks at Kannada English bilingual children and works towards identifying children at risk of “specific language impairment”. The study was conducted through an exploratory study which systematically enquired into the narratives of young Kannada-English bilinguals and to investigate the data for story structure in their narrative formulations. Oral narrative offers a rich source of data about a child’s language use in a relatively natural context. The fundamental objective is to ensure comparability and to be more universal and thus allows for the evaluation narrative text competence. The data was collected from 10 class three students at a primary school in Mysore, Karnataka and analyzed for macrostructure component reflecting the goal directed behavior of a protagonist who is motivated to carry out some kind of action with the intention of attaining a goal. The results show that the children exhibiting a deviation of -1.25 SD are at risk of SLI. Two learners were identified to be at risk of Specific Language Impairment with a standard deviation of more the 1.25 below the mean score.

Keywords: bilingual, oral narratives, SLI, macrostructure

Procedia PDF Downloads 273
439 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 100
438 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 308
437 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 121
436 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 332
435 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 179
434 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 278
433 Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy

Authors: Ankush M. Dewle, Suditi Bhattacharya, Prachi R. Abhang, Savita Datar, Ajay J. Jog, Rupesh K. Srivastava, Geetanjali Tomar

Abstract:

Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient.

Keywords: bone regeneration, cell therapy, senescence, stem cell

Procedia PDF Downloads 164
432 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia

Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk

Abstract:

Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).

Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes

Procedia PDF Downloads 281
431 Using ICESat-2 Dynamic Ocean Topography to Estimate Western Arctic Freshwater Content

Authors: Joshua Adan Valdez, Shawn Gallaher

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport, modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116km3/year across the Beaufort Gyre. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff, and is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity-driven pycnocline as opposed to the temperature-driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and dynamic ocean topography (DOT). In situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time-consuming. Utilizing NASA’s ICESat-2’s DOT remote sensing capabilities and Air Expendable CTD (AXCTD) data from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), a linear regression model between DOT and freshwater content is determined along the 150° west meridian. Freshwater content is calculated by integrating the volume of water between the surface and a depth with a reference salinity of ~34.8. Using this model, we compare interannual variability in freshwater content within the gyre, which could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non-in situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially demonstrate the value of remote sensing tools to reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: Cryosphere, remote sensing, Arctic oceanography, climate modeling, Ekman transport

Procedia PDF Downloads 60
430 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 347
429 Cryptic Diversity: Identifying Two Morphologically Similar Species of Invasive Apple Snails in Peninsular Malaysia

Authors: Suganiya Rama Rao, Yoon-Yen Yow, Thor-Seng Liew, Shyamala Ratnayeke

Abstract:

Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Apart from significant economic costs to wetland crops, very little is known about the snails’ effects on native species, and wetland function through their alteration of macrophyte communities. This study was conducted to establish diagnostic characteristics of Pomacea species in the Malaysian environment using genetic and morphological criteria. Snails were collected from eight localities in northern and central regions of Peninsular Malaysia. The mitochondrial COI gene of 52 adult snails was amplified and sequenced. Maximum likelihood analysis was used to analyse species identity and assess phylogenetic relationships among snails from different geographic locations. Shells of the two species were compared using geometric morphometric analysis and covariance analyses. Shell height accounted for most of the observed variation between P. canaliculata and P. maculata, with the latter possessing a smaller mean ratio of shell height: aperture height (p < 0.0001) and shell height to shell width (give p < 0.0001). Genomic and phylogenetic analysis demonstrated the presence of two monophyletic taxa, P. canaliculata and P. maculata, in Peninsular Malaysia samples. P. maculata co-occurred with P. canaliculata in 5 localities, but samples from 3 localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a genomic approach. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrate much interspecific overlap and intraspecific variability; thus morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and develop effective protocols for their management.

Keywords: Pomacea canaliculata, Pomacea maculata, invasive species, phylog enetic analysis, geometric morphometric analysis

Procedia PDF Downloads 244
428 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 482
427 Inelastic and Elastic Taping in Plantar Pressure of Runners Pronators: Clinical Trial

Authors: Liana Gomide, Juliana Rodrigues

Abstract:

The morphology of the foot defines its mode of operation and a biomechanical reform indispensable for a symmetrical distribution of plantar pressures in order not to overload some of its components in isolation. High plantar pressures at specific points in the foot may be a causal factor in several orthopedic disorders that affect the feet such as pain and stress fracture. With digital baro-podometry equipment one can observe an intensity of pressures along the entire foot and quantify some of the movements, such as a subtalar pronation present in the midfoot region. Although, they are involved in microtraumas. In clinical practice, excessive movement has been limited with the use of different taping techniques applied on the plantar arch. Thus, the objective of the present study was to analyze and compare the influence of the inelastic and elastic taping on the distribution of plantar pressure of runners pronators. This is a randomized clinical trial and blind-crossover. Twenty (20) male subjects, mean age 33 ± 7 years old, mean body mass of 71 ± 7 kg, mean height of 174 ± 6 cm, were included in the study. A data collection was carried out by a single research through barop-odometry equipment - Tekscan, model F-scan mobile. The tests were performed at three different times. In the first, an initial barop-odometric evaluation was performed, without a bandage application, with edges at a speed of 9.0 km/h. In the second and third moments, the inelastic or elastic taping was applied consecutively, according to the definition defined in the randomization. As results, it was observed that both as inelastic and elastic taping, provided significant reductions in contact pressure and peak pressure values when compared to the moment without a taping. However, an elastic taping was more effective in decreasing contact pressure (no bandage = 714 ± 201, elastic taping = 690 ± 210 and inelastic taping = 716 ± 180) and no peak pressure in the midfoot region (no bandage = 1490 ± 42, elastic taping = 1273 ± 323 and inelastic taping = 1487 ± 437). It is possible to conclude that it is an elastic taping provided by pressure in the middle region, thereby reducing the subtalar pronunciation event during the run.

Keywords: elastic taping, inelastic taping, running, subtalar pronation

Procedia PDF Downloads 133
426 Genesis of Talc Bodies in Relation to the Mafic-Ultramafic Rocks around Wonu, Ibadan-Apomu Area, Southwestern Nigeria

Authors: Morenike Abimbola Adeleye, Anthony Temidayo Bolarinwa

Abstract:

The genesis of talc bodies around Wonu, Ibadan-Apomu area, southwestern Nigeria, has been speculative due to inadequate compositional data on the talc and the mafic-ultramafic protoliths. Petrography, morphology, using scanning electron microscope, mineral chemistry, X-ray diffraction, and major, trace and rare-earth element compositions of the talc and the mafic-ultramafic in the area were undertaken with a view to determine the genesis of the talc bodies. Fine-grained amphibolite and lherzolite are the major mafic-ultramafic rocks in the study area. The amphibolite is fine-grained, composed of amphiboles, pyroxenes plagioclase, K-feldspar, ilmenite, magnetite, and garnet. The lherzolite and talc are composed of olivines, pyroxenes, amphiboles, and plagioclase. Alteration minerals include serpentine, amesite, talc, Cr-bearing clinochlore, and ferritchromite. Cr-spinel, pyrite, and magnetite are the accessory minerals present. Alteration of olivines, pyroxenes, and amphiboles to talc and chlinochlore; and spinel to ferritchchromite by hydrothermal (H₂O-CO₂-Cl-HF) fluids, provided by the granitic intrusions in the area, showed retrograde metasomatism of amphibolites to greenschist facies at 500-550ºC. This led to the formation of talc, amesite, anthophyllite, actinolite, and tremolite. The Al₂O₃-Fe₂O₃+TiO₂-MgO discrimination diagram suggests tholeiitic protolith for the amphibolite and komatitic protolith for the lherzolite. The lherzolite has flat rare-earth element patterns typical of komatiites and dunites. The Al₂O₃/TiO₂ ratios, Ce/Nb vs. Th/Nb, Cr-TiO₂, TiO₂ vs. Al₂O₃, and Nd vs. Nb discrimination diagrams indicated that the talcs are from two-parent sources: altered metacarbonates and tholeiitic basalts (amphibolites) to komatitic basalts (lherzolites).

Keywords: amphibolites, lherzolites, talc, komatiite

Procedia PDF Downloads 193
425 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing

Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati

Abstract:

The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.

Keywords: drug release, hydrogel, tetracycline, wound healing

Procedia PDF Downloads 67
424 Isolation and Molecular Characterization of Lytic Bacteriophage against Carbapenem Resistant Klebsiella pneumoniae

Authors: Guna Raj Dhungana, Roshan Nepal, Apshara Parajuli, , Archana Maharjan, Shyam K. Mishra, Pramod Aryal, Rajani Malla

Abstract:

Introduction: Klebsiella pneumoniae is a well-known opportunistic human pathogen, primarily causing healthcare-associated infections. The global emergence of carbapenemase-producing K. pneumoniaeis a major public health burden, which is often extensively multidrug resistant.Thus, because of the difficulty to treat these ‘superbug’ and menace and some term as ‘apocalypse’ of post antibiotics era, an alternative approach to controlling this pathogen is prudent and one of the approaches is phage mediated control and/or treatment. Objective: In this study, we aimed to isolate novel bacteriophage against carbapenemase-producing K. pneumoniaeand characterize for potential use inphage therapy. Material and Methods: Twenty lytic phages were isolated from river water using double layer agar assay and purified. Biological features, physiochemical characters, burst size, host specificity and activity spectrum of phages were determined. One most potent phage: Phage TU_Kle10O was selected and characterized by electron microscopy. Whole genome sequences of the phage were analyzed for presence/absence of virulent factors, and other lysin genes. Results: Novel phage TU_Kle10O showed multiple host range within own genus and did not induce any BIM up to 5th generation of host’s life cycle. Electron microscopy confirmed that the phage was tailed and belonged to Caudovirales family. Next generation sequencing revealed its genome to be 166.2 Kb. bioinformatical analysis further confirmed that the phage genome ‘did not’ contain any ‘bacterial genes’ within phage genome, which ruled out the concern for transfer of virulent genes. Specific 'lysin’ enzyme was identified phages which could be used as 'antibiotics'. Conclusion: Extensively multidrug resistant bacteria like carbapenemase-producing K. pneumoniaecould be treated efficiently by phages.Absence of ‘virulent’ genes of bacterial origin and presence of lysin proteins within phage genome makes phages an excellent candidate for therapeutics.

Keywords: bacteriophage, Klebsiella pneumoniae, MDR, phage therapy, carbapenemase,

Procedia PDF Downloads 167
423 The Source of Fibre and Roxazyme® G2 Interacted to Influence the Length of Villi in the Ileal Epithelium of Growing Pigs Fed Fibrous Maize-Soybean Diets

Authors: F. Fushai, M.Tekere, M. Masafu, F. Siebrits, A. Kanengoni, F. Nherera

Abstract:

The effects of dietary fibre source on the histomorphology of the ileal epithelium were examined in growing pigs fed high fibre (242-250 g total dietary fibre kg-1 dry matter) diets fortified with Roxazyme® G2. The control was a standard, low fibre (141 g total dietary fibre kg-1 dry matter) diet formulated from dehulled soybean (Glycine max), maize (Zea Mays) meal and hominy chop. Five fibrous diets were evaluated in which fibre was increased by partial substitution of the grains in the control diet with maize cobs, soybean hulls, barley (Hordeum vulgare L) brewer’s grains, Lucerne (Medicago sativa) hay or wheat (Triticum aestivum) bran. Each diet was duplicated and 220 mg Roxazyme® G2 kg-1 dry mater was added to one of the mixtures. Seventy-two intact Large White X Landrace male pigs of weight 32 ± 5.6 kg pigs were randomly allocated to the diets in a complete randomised design with a 2 (fibre source) X (enzyme) factorial arrangement of treatments. The pigs were fed ad libitum for 10 weeks. Ileal tissue samples were taken at slaughter, at a point 50cm above the ileal-caecal valve. Villi length and area, and crypt depth were measured by computerised image analyses. The villi length: crypt ratio was calculated. The diet and the supplemental enzyme cocktail did not affect (p>0.05) any of the measured parameters. Significant (p=0.016) diet X enzyme interaction was observed for villi length whereby the enzyme reduced the villi length of pigs on the soy-hulls, standard and wheat bran diets, with an opposite effect on pigs on the maize cob, brewer’s grain, Lucerne diets. The results suggested fibre-source dependent changes in the morphology of the ileal epithelium of pigs fed high fibre, maize-soybean diets fortified with Roxazyme® G2.

Keywords: fibre, growing pigs, histomorphology, ileum, Roxazyme® G2

Procedia PDF Downloads 452
422 Prophylactic and Curative Effect of Selenium on Infertility Induced by Formaldehyde Using Male Albino Mice

Authors: Suhera M. Aburawi, Habiba A. El Jaafari, Soad A. Treesh, Abdulssalam M. Abu-Aisha, Faisal S. Alwaer, Reda A. Eltubuly, Medeha Elghedamsi

Abstract:

Introduction: Infertility is a source of psychological, and sometimes social, stress on parents who desire to have children. Formaldehyde is used chiefly as disinfectant, preservative and in the chemical synthesis. The medical uses of formaldehyde are limited, but focused especially on laboratory use. Selenium is an essential trace mineral element for human; it is essential for sperm function and male fertility. Selenium deficiency has been linked to reproductive problems in animals. Objectives: To investigate the prophylactic and curative effect of selenium on male infertility induced by formaldehyde using male albino mice. Method: Forty male albino mice were used, weight 25-30 gm. Five groups of male mice (n=8) were used. Group 1 was daily administered water for injection (5ml/kg) for five days, group 2 was daily administered selenium (100 μg/kg) for five days, group 3 was daily administered formaldehyde (30mg/kg) for five days, group 4 (prophylaxis) was daily administered a combination of formaldehyde and selenium for five days, while group 5 (curative) was daily administered formaldehyde for five days followed by daily administration of selenium for the next five days. Intraperitoneal administration was adopted. At the end of the administration, seminal fluid was collected from vas deferens. Sperm count, morphology and motility were scored; histopathological screening of genital system was carried out. SPSS was applied for comparing groups. Results and conclusion: It was found that formaldehyde toxicity did not change the sperm count and percentage of motile sperm; unhealthy sperm was increased, while healthy sperm was decreased. Formaldehyde produces degeneration/damage to the male mice genital system. Selenium alone produce an increase in sperm count, volume of seminal fluid and the percentage of motile sperm. Selenium has prophylactic and curative effects against formaldehyde-induce genital system toxicity. Future work is recommended to find out if selenium protective effect is through antioxidant or other mechanisms.

Keywords: infertility, formaldehyde, selenium, male mice

Procedia PDF Downloads 408
421 Overview of Cage Aquaculture Practices, Benefits and Challenges on Africa Waters Bodies

Authors: Mekonen Hailu, Liu Liping

Abstract:

Cage aquaculture is highly preferred due to higher production per unit volume of water, lower costs of investment, and simpler routine farm management procedures compared to pond systems. In the 1980s, cage culture was first used on a trial basis in sub-Saharan Africa. Over the past 20 years, a small number of prosperous freshwater cage culture operations have started to emerge in Egypt, Rwanda, Kenya, Uganda, Tanzania, Ghana, Malawi, Zambia and Zimbabwe. Brackish and marine cage culture also offers a lot of potential, although this subsector hasn't seen any significant commercial growth to date. In 2019, 263 cage aquaculture installations on the African inland waters on 18 water bodies within eight countries with an estimated 20,114 cages were reported. The lakes Victoria, Kariba, Volta, and River Volta, which together account for 82.9% of all cage aquaculture installations regarded as sub-Saharan Africa's principal cage aquaculture regions (Fig 1). Except few small-scale trials with North African catfish (Clarias gariepinus), almost all farms in Sub-Saharan Africa and Egypt grow Nile tilapia (Oreochromis niloticus). More than 247,398 tonnes of fish are produced yearly from ten African countries through cage aquaculture. The expansion of cage culture in Africa provides job opportunities for both skilled and unskilled workers, nutritious food and foreign currency. The escaping non-native strains of tilapia in Lake Volta and the occurrence of a risky Tilapia lake virus (syncytial hepatitis), which has the potential to wipe out entire populations in both wild and farmed Nile tilapia on Lake Victoria, are threats coming with the expansion of cage aquaculture in Africa. In addition, the installations of 138 cage aquacultures were found in contrary to best cage culture practices. To sustain cage aquaculture development and maintain harmony with other water uses, developers must strictly abide by best practices. Hence, the exclusion of protected areas and small lakes (average depth 5 m or less) should be done, as well an Environmental Impact Assessment should be conducted before establishing the cage farms.

Keywords: Africa, cage aquaculture, production, threats

Procedia PDF Downloads 38
420 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model

Authors: V. S. Manivasagam, R. Nagarajan

Abstract:

Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.

Keywords: AquaCrop, crop modeling, rainfed maize, water stress

Procedia PDF Downloads 250
419 Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation

Authors: Ji Un Shin, Wei Mao, Hyuk Sang Yoo

Abstract:

Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils.

Keywords: nano, fiber, cell, tissue

Procedia PDF Downloads 153
418 Investigating the Effect of Using Amorphous Silica Ash Obtained from Rice Husk as a Partial Replacement of Ordinary Portland Cement on the Mechanical and Microstructure Properties of Cement Paste and Mortar

Authors: Aliyu Usman, Muhaammed Bello Ibrahim, Yusuf D. Amartey, Jibrin M. Kaura

Abstract:

This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the mechanical and microstructure properties of cement paste and mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 3 percent, 5 percent, 8 percent and 10 percent. These partial replacements were used to produce Cement-ASA paste and Cement-ASA mortar. ASA was found to contain all the major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. Consistency of Cement-ASA paste was found to increase with increase in ASA replacement. Likewise, the setting time and soundness of the Cement-ASA paste also increases with increase in ASA replacements. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) at 2, 7, 14 and 28 days curing and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel platens) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days. There is an increase in the drying shrinkage of Cement-ASA mortar with curing time, it was also observed that the drying shrinkages for all the curing ages were greater than the control specimen all of which were greater than the code recommendation of less than 0.03%. The scanning electron microscope (SEM) was used to study the Cement-ASA mortar microstructure and to also look for hydration product and morphology.

Keywords: amorphous silica ash, cement mortar, cement paste, scanning electron microscope

Procedia PDF Downloads 415
417 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.

Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 240
416 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices

Authors: P. Caimmi, E. Bele, A. Abolfathi

Abstract:

Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.

Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis

Procedia PDF Downloads 108
415 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 114