Search results for: learning from history
7423 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning
Authors: Hong Zhang
Abstract:
The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning
Procedia PDF Downloads 1437422 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 1117421 The History of the Birth of Tunisian Higher Accounting Education
Authors: Rim Khemiri, Mariam Dammak
Abstract:
The aim of this study is to trace the historical evolution of Tunisian higher accounting education and to understand and highlight the circumstances of its birth and its development. A documentary study (archival documents, official documents, public speeches, etc.), as well as semi-directive interviews with key actors, were carried out as part of this research work. These interviews aim to fill a lack of information on this subject and to confirm events addressed by other sources, but for which it lacks the elements necessary for a good understanding. After having put forward the specificities of the Tunisian context, we will, first of all, proceed to a review of the literature related to our theme in various contexts of the world. Then, we will present the evolution of the accounting curriculum by highlighting the circumstances of its birth and those of the successive reforms led by the Tunisian government. The study of higher accounting education in Tunisia and its evolution has several interests. The first lies in understanding the circumstances of its birth and its evolution in relation to the historical, socio-economic, and political context of the country. The second is to propose a reading grid that allows an understanding of the reforms that led to the university accountancy accounting course as we know it today. And, the third, aims to complete the literature on the processes of evolution of higher education accounting, by treating a different context, in order to provide additional knowledge necessary to compare experiences in this area around the world.Keywords: accounting history, higher accounting education, socio-economic and political context, Tunisian context
Procedia PDF Downloads 1307420 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 677419 Education, Learning and Management: Empowering Individuals for the Future
Authors: Ngong Eugene Ekia
Abstract:
Education is the foundation for the success of any society as its impact transcends across all sectors, including economics, politics, and social welfare. It is through education that individuals acquire the necessary knowledge and skills to succeed in life and contribute meaningfully to society. However, the world is changing rapidly, and it is vital for education systems to adapt to these changes to remain relevant. In this paper, we will discuss the current trends and challenges in education and management and propose solutions that can enable individuals to thrive in an ever-evolving world.Keywords: access to education, effective teaching and learning, strong management practices, and empowering and personal development
Procedia PDF Downloads 1387418 Vantage Point–Visual Culture, Popular Media, and Contemporary Educational Practice
Authors: Elvin Karaaslan Klose
Abstract:
In the field of Visual Culture, Art Education students are given the opportunity to discuss topics of interest that are closer to their own social life and media consumption habits. In contrast to the established corpus of literature and sources about Art History, educators are challenged to find topics and examples from Popular Culture and Contemporary Art that provide familiarity, depth and inspiration for students’ future practice, both as educators as well as artists. In order to establish a welcoming and fruitful discussion environment at the beginning of an introductory Visual Culture Education course with fourth year Art Education students, the class watched and subsequently discussed the movie “Vantage Point”. Using the descriptive method and content analysis; video recordings, discussion transcripts and learning diaries were summarized to highlight students’ critical points of view towards commonly experienced but rarely reflected on topics of Popular and Visual Culture. As an introduction into more theory-based forms of discussion, watching and intensely discussing a movie has proven useful by proving a combination of a familiar media type with an unfamiliar educational context. Resulting areas of interest have served as a starting point for later research, discussion and artistic production in the scope of an introductory Visual Culture Education course.Keywords: visual culture, critical pedagogy, media literacy, art education
Procedia PDF Downloads 6727417 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1867416 Creation and Management of Knowledge for Organization Sustainability and Learning
Authors: Deepa Kapoor, Rajshree Singh
Abstract:
This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.Keywords: knowledge creation, knowledge management, organizational development, organization learning
Procedia PDF Downloads 3437415 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 797414 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 2477413 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation
Procedia PDF Downloads 3747412 Proposal for a Mobile Application with Augmented Reality to Improve School Interest
Authors: Mamani Acurio Alex, Aguilar Alonso Igor
Abstract:
The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.Keywords: augmented reality, Vuforia, school interest, learning
Procedia PDF Downloads 857411 Sero-Prevalence of Hepatitis B Surface Antigen and Associated Factors among Pregnant Mothers Attending Antenatal Care Service, Mekelle, Ethiopia: Evidence from Institutional Based Quantitative Cross-Sectional Study
Authors: Semaw A., Awet H., Yohannes M.
Abstract:
Background: Hepatitis B Virus (HBV) is a major global public health problem. Individuals living in Sub-Sahara Africa have 60% lifetime risk of acquiring HBV infection. Evidences showed that 80-90% of those born from infected mothers developed chronic HBV. Perinatal HBV transmission is a major determinant of HBV carrier status, its chronic squeal and maintains HBV transmission across generations. Method: Institution based cross-sectional study was conducted among 406 pregnant mothers attending Antenatal clinics at Mekelle and Ayder referral hospital from January 30 to April 1/2014. Epidata version 3.1 was used for data entry and SPSS version 21 statistical software was used for data cleaning, management and finally determine associated factors of hepatitis B surface antigen adjusting important confounders using multivariable logistic regression analysis at 5% level of significance. Result: The overall prevalence of hepatitis B surface antigen among pregnant women was 33 (8.1%). The socio-demographic characteristic of the study population showed that there is high positivity among secondary school 189 (46.6%). In the multivariable logistic regression analysis, history of a contact with individuals who had history of hepatitis B infection or jaundice and lifetime number of multiple sexual partners were found to be significantly associated with HBsAg positivity at AOR = 3.73 95%C.I (1.373-10.182) and AOR = 2.57 95%C.I (1.173-5.654), respectively. Moreover, Human Immunodeficiency Virus (HIV) and HBV confection rate was found 3.6%. Conclusion: This study has shown that HBV prevalence in pregnant women is highly prevalent (8.1%) in the study area. Contact with individuals who had a history of hepatitis or have jaundice and report of multiple lifetime sexual partnership were associated with hepatitis B infection. Education about HBV transmission and prevention as well as screening all pregnant mothers shall be sought to reduce the serious public health crisis of HBV.Keywords: HBsAg, hepatitis B, pregnant women, prevalence
Procedia PDF Downloads 3397410 Introducing the Concept of Sustainable Learning: Redesigning the Social Studies and Citizenship Education Curriculum in the Context of Saudi Arabia
Authors: Aiydh Aljeddani, Fran Martin
Abstract:
Sustainable human development is an essential component of a sustainable economic, social and environmental development. Addressing sustainable learning only through the addition of new teaching methods, or embedding certain approaches, is not sufficient on its own to support the goals of sustainable human development. This research project seeks to explore how the process of redesigning the current principles of curriculum based on the concept of sustainable learning could contribute to preparing a citizen who could later contribute towards sustainable human development. Multiple qualitative methodologies were employed in order to achieve the aim of this study. The main research methods were teachers’ field notes, artefacts, informal interviews (unstructured interview), a passive participant observation, a mini nominal group technique (NGT), a weekly diary, and weekly meeting. The study revealed that the integration of a curriculum for sustainable development, in addition to the use of innovative teaching approaches, highly valued by students and teachers in social studies’ sessions. This was due to the fact that it created a positive atmosphere for interaction and aroused both teachers and students’ interest. The content of the new curriculum also contributed to increasing students’ sense of shared responsibility through involving them in thinking about solutions for some global issues. This was carried out through addressing these issues through the concept of sustainable development and the theory of Thinking Activity in a Social Context (TASC). Students had interacted with sustainable development sessions intellectually and they also practically applied it through designing projects and cut-outs. Ongoing meetings and workshops to develop work between both the researcher and the teachers, and by the teachers themselves, played a vital role in implementing the new curriculum. The participation of teachers in the development of the project through working papers, exchanging experiences and introducing amendments to the students' environment was also critical in the process of implementing the new curriculum. Finally, the concept of sustainable learning can contribute to the learning outcomes much better than the current curriculum and it can better develop the learning objectives in educational institutions.Keywords: redesigning, social studies and citizenship education curriculum, sustainable learning, thinking activity in a social context
Procedia PDF Downloads 2317409 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1377408 The Development of Chinese-English Homophonic Word Pairs Databases for English Teaching and Learning
Authors: Yuh-Jen Wu, Chun-Min Lin
Abstract:
Homophonic words are common in Mandarin Chinese which belongs to the tonal language family. Using homophonic cues to study foreign languages is one of the learning techniques of mnemonics that can aid the retention and retrieval of information in the human memory. When learning difficult foreign words, some learners transpose them with words in a language they are familiar with to build an association and strengthen working memory. These phonological clues are beneficial means for novice language learners. In the classroom, if mnemonic skills are used at the appropriate time in the instructional sequence, it may achieve their maximum effectiveness. For Chinese-speaking students, proper use of Chinese-English homophonic word pairs may help them learn difficult vocabulary. In this study, a database program is developed by employing Visual Basic. The database contains two corpora, one with Chinese lexical items and the other with English ones. The Chinese corpus contains 59,053 Chinese words that were collected by a web crawler. The pronunciations of this group of words are compared with words in an English corpus based on WordNet, a lexical database for the English language. Words in both databases with similar pronunciation chunks and batches are detected. A total of approximately 1,000 Chinese lexical items are located in the preliminary comparison. These homophonic word pairs can serve as a valuable tool to assist Chinese-speaking students in learning and memorizing new English vocabulary.Keywords: Chinese, corpus, English, homophonic words, vocabulary
Procedia PDF Downloads 1817407 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry
Authors: Paulomi Polly Burey, Mark Lynch
Abstract:
It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.Keywords: chemistry, food science, future pedagogy, STEM education
Procedia PDF Downloads 1677406 A Hybrid Curriculum: Privileging Indigenous knowledges Over Western knowledges In The School Curriculum In Kenya
Authors: Rose Mutuota
Abstract:
Western knowledge have influenced the Kenyan education system through colonisation and policies borrowed from the global North. Researchers argue that studies of education and systems based on Northernframeworks ignore the lived experiences of the global South. The history of colonization is one such example. In light of this, there is a need for schools to consider the lived experience of the Kenyan child and integrate Indigenous knowledge in the education system. The study reported here explored the possibility of creating a blended/hybrid curriculum that values Indigenous knowledge and practices but also selectively use side as from the global North. Acasestudyformat was employed. Teachers and principals in four schools were interviewed. The findings indicated that teachers and students brought indigenous knowledge to the classroom but were limited in their use by existing educational policies.AnotherfindingwasthatpoliciesborrowedfromtheglobalNorthdid not suit the context in the Southincountries with a history of colonization. There was the need for policymakers to ensure the policies borrowed from the North suit the Kenyan context. The recommendations included the deliberate and mandated use of indigenous knowledge in classrooms including indigenous languages for instruction, the use of locally available assets to support students with disabilities in mainstream classrooms, and the use of a hybrid curriculum that privileges indigenous knowledge over Westernknowledgesintheschoolcurriculum.Keywords: global North, global South, inclusive educate indigenous knowledges
Procedia PDF Downloads 1997405 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills
Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li
Abstract:
Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.Keywords: nanotechnology, science education, project-based learning, information and communication technology
Procedia PDF Downloads 3747404 The Incorporation of Themes Related to Islandness in Tourism Branding among Cold-Water, Warm-Water, and Temperate-Water Islands
Authors: Susan C. Graham
Abstract:
Islands have a long established allure for travellers the world over. From earliest accounts of human history, travellers were drawn by the sense of islandness embodied by these destinations. The concept of islandness describes the essence of what makes islands unique relative to non-islands and extends beyond geographic interpretations by attempting to capture the specific sense of self-exhibited by islanders in relation to their connection to place. The themes most strongly associated with islandness include a) a strong connection to water as both the life blood and a physical barrier, b) a unique culture and robust arts community that is deeply linked to both the island and islanders, c) an appreciation of and for nature, d) a rich sense of history and tradition connected to the place, e) a sense of community and belonging that arose through shared triumphs and struggles, and f) a profound awareness of independence, separateness, and uniqueness derived from both physical and social experience. The island brand, like all brands, is a marketing tactic designed to succinctly express a specific value proposition in simplistic ways which might include a brand symbol, logo, slogan, or representation meant to distinguish one brand from another. If a value proposition is the identification of attributes that separate one brand from another by highlighting the brand’s uniqueness, then presumably island brands may, at least in part, emphasize islandness as part of the destination brand. Yet it may in naïve to expect all islands to brand themselves using similar themes when islands can differ so substantially in terms of population, geography, political climate, economy, culture, and history. Of particular interest is the increased focus on tourism among 'cold-water' islands. This paper will examine the incorporation of themes related to islandness in tourism branding among cold-water, warm-water, and temperate-water islands. The tourism logos of 83 islands were collected and assessed for the use of themes related to islandness, namely water, arts and culture, nature, history and tradition, community and belongingness, and independence, separateness, and uniqueness. The ratings for each theme related to islandness for each of the 83 island destinations were then analyzed to identify if differences exist between cold-water, warm-water, and temperate-water islands. A general consensus of what constitutes 'cold-water' destinations is lacking, therefore a water temperature of 15C was adopted using the guidelines from the National Center for Cold Water Safety. Among these 83 islands, the average high and average low water temperatures of 196 specific locations, including the capital, northern, and southern most points of each island, was recorded to determine if the location was a cold-water (average high and low below 15C), warm-water (average high and low above 15C), or temperate-water (average high above 15C and low below 15C) location.Keywords: branding, cold-water, islands, tourism
Procedia PDF Downloads 2227403 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 257402 War and Peace in the Hands of the Media: Review of Global Media Reports and Their Influencing Factors on the Foreign and Security Policy Opinions of the Population
Authors: Ismahane Emma Karima Bessi
Abstract:
Military sociology is largely avoided. Discussing the military as a societal phenomenon and the social dimensions of war and peace is now considered a disgraceful and neglected province of social science that has a major impact on global populations. The first official press war began with William Howard Russell in the mid-19th century. The media are crucial to war and peace. Even Gaius Julius Caesar, with his "commentarii bello gallico", was a media tool to influence his warfare. Napoleon Bonaparte also knew how important the press was for his actions. This shows how important history is for crisis and war journalism. The one-sided media coverage that every country is confronted with ultimately prevents people from having a certain interest in the truth and from gross knowledge gaps in order to get an accurate picture of reality. There is a need to examine the relationship between the military, war, and the media to look at the modality in which the media is involved in military conflicts, in this case, as an adjunct, i.e., war because of the media. These are promoted or initiated by the following factors: photos intended for the visual manipulation of the population, the pressure from politicians and parties who are urging and exerting their influence on the global media to share the same pattern of opinion, and, most importantly, the media profiting from the war by listening to popular reactions and passing them on promoting with new visuals. These influence political elections. The media occupies a huge and ubiquitous part of the population. These have the ability to make a country that is in constant crisis and war mode appear in a brilliant light of peace. An article or photograph taken by one journalist has a tremendous impact as it can control the minds of millions of people. Most wars currently have state-political reasons. The parties, therefore, want to have their (potential) voters on their side, who are inflated by the media. The military is loathed or loved. Thinking must be created that a well-trained military in the instances of natural sciences, history, and sociology can save or protect the lives of many people. Theoretical methods for this are defined and evaluated in more detail in this paper.Keywords: war, history, military, science, journalism, crisis
Procedia PDF Downloads 837401 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality
Authors: Robert Jesiolowski, Monique Jesiolowski
Abstract:
Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.Keywords: higher education, innovation, virtual reality, game-based learning, loci method
Procedia PDF Downloads 957400 Lived Experiences of Physical Education Teachers in the New Normal: A Consensual Qualitative Research
Authors: Karl Eddie T. Malabanan
Abstract:
Due to the quick transmission and public health risk of coronavirus disease, schools and universities have shifted to distant learning. Teachers everywhere were forced to shift gears instantly in order to react to the needs of students and families using synchronous and asynchronous virtual teaching. This study aims to explore the lived experiences of physical education teachers who are currently experiencing remote learning in teaching during the time of the COVID-19 pandemic. Specifically, the challenges that the physical education teachers encounter during remote learning and teaching. The participants include 12 physical education teachers who have taught in higher education institutions for at least five years. The researcher utilized qualitative research; specifically, the researcher used Consensual Qualitative Research (CQR). The results of this study showed that there are five categories for the Lived Experiences of Physical Education Teachers with thirty-one subcategories. This study revealed that physical education teachers experienced very challenging situations during the time of the pandemic. It also found that students had challenges in the abrupt transition from traditional to virtual learning classes, but it also showed that students are tenacious and willing to face any adversity. The researcher also finds that teachers are mentally drained during this time. Furthermore, one of the main focuses for the teachers should be on improving their well-being. And lastly, to cope with the challenges, teachers employ socializing to relieve tension and anxiety.Keywords: lived experiences, consensual qualitative research, pandemic, education
Procedia PDF Downloads 917399 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology
Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang
Abstract:
The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning
Procedia PDF Downloads 1467398 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images
Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion
Abstract:
Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.Keywords: aerial LiDAR, colorization, deep learning, intensity images
Procedia PDF Downloads 1647397 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 5367396 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 237395 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing
Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez
Abstract:
This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy
Procedia PDF Downloads 5517394 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 52