Search results for: forensic accounting & fraud detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4436

Search results for: forensic accounting & fraud detection

2216 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: patents, scientometric, renewable energy, technology maps

Procedia PDF Downloads 308
2215 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours

Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson

Abstract:

A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.

Keywords: irritation, odour delivery, olfactometer, smell

Procedia PDF Downloads 216
2214 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting

Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu

Abstract:

large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.

Keywords: automatic attendance, face detection, haar-like cascade, manual attendance

Procedia PDF Downloads 72
2213 Unlocking Justice: Exploring the Power and Challenges of DNA Analysis in the Criminal Justice System

Authors: Sandhra M. Pillai

Abstract:

This article examines the relevance, difficulties, and potential applications of DNA analysis in the criminal justice system. A potent tool for connecting suspects to crime sites, clearing the innocent of wrongdoing, and resolving cold cases, DNA analysis has transformed forensic investigations. The scientific foundations of DNA analysis, including DNA extraction, sequencing, and statistical analysis, are covered in the article. To guarantee accurate and trustworthy findings, it also discusses the significance of quality assurance procedures, chain of custody, and DNA sample storage. DNA analysis has significantly advanced science, but it also brings up substantial moral and legal issues. To safeguard individual rights and uphold public confidence, privacy concerns, possible discrimination, and abuse of DNA information must be properly addressed. The paper also emphasises the effects of the criminal justice system on people and communities while highlighting the necessity of equity, openness, and fair access to DNA testing. The essay describes the obstacles and future directions for DNA analysis. It looks at cutting-edge technology like next-generation sequencing, which promises to make DNA analysis quicker and more affordable. To secure the appropriate and informed use of DNA evidence, it also emphasises the significance of multidisciplinary collaboration among scientists, law enforcement organisations, legal experts, and policymakers. In conclusion, DNA analysis has enormous potential for improving the course of criminal justice. We can exploit the potential of DNA technology while respecting the ideals of justice, fairness, and individual rights by navigating the ethical, legal, and societal issues and encouraging discussion and collaboration.

Keywords: DNA analysis, DNA evidence, reliability, validity, legal frame, admissibility, ethical considerations, impact, future direction, challenges

Procedia PDF Downloads 64
2212 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
2211 KAP Study on Breast Cancer Among Women in Nirmala Educational Institutions-A Prospective Observational Study

Authors: Shaik Asha Begum, S. Joshna Rani, Shaik Abdul Rahaman

Abstract:

INTRODUCTION: Breast cancer is a disease that creates in breast cells. "KAP" study estimates the Knowledge, Attitude, and Practices of a local area. More than 1.5 million ladies (25% of all ladies with malignancy) are determined to have bosom disease consistently all through the world. Understanding the degrees of Knowledge, Attitude and Practice will empower a more effective cycle of mindfulness creation as it will permit the program to be custom-made all the more properly to the necessities of the local area. OBJECTIVES: The objective of this study is to assess the knowledge on signs and symptoms, risk factors, provide awareness on the practicing of the early detection techniques of breast cancer and provide knowledge on the overall breast cancer including preventive techniques. METHODOLOGY: This is an expressive cross-sectional investigation. This investigation of KAP was done in the Nirmala Educational Institutions from January to April 2021. A total of 300 participants are included from women students in pharmacy graduates & lecturers, and also from graduates other than the pharmacy. The examiners are taken from the BCAM (Breast Cancer Awareness Measure), tool compartment (Version 2). RESULT: According to the findings of the study, the majority of the participants were not well informed about breast cancer. A lump in the breast was the most commonly mentioned sign of breast cancer, followed by pain in the breast or nipple. The percentage of knowledge related to the breast cancer risk factors was also very less. The correct answers for breast cancer risk factors were radiation exposure (58.20 percent), a positive family history (47.6 percent), obesity (46.9 percent), a lack of physical activity (43.6 percent), and smoking (43.2 percent). Breast cancer screening, on the other hand, was uncommon (only 30 and 11.3 percent practiced clinical breast examination and mammography respectively). CONCLUSION: In this study, the knowledge on the signs and symptoms, risk factors of breast cancer - pharmacy graduates have more knowledge than the non-pharmacy graduates but in the preventive techniques and early detective tools of breast cancer -had poor knowledge in the pharmacy and non-pharmacy graduate. After the awareness program, pharmacy and non-pharmacy graduates got supportive knowledge on the preventive techniques and also practiced the early detective techniques of breast cancer.

Keywords: breast cancer, mammography, KAP study, early detection

Procedia PDF Downloads 138
2210 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 177
2209 Corporate Governance Role of Audit Committees in the Banking Sector: Evidence from Libya

Authors: Abdulaziz Abdulsaleh

Abstract:

This study aims at identifying the practices that should be taken into consideration by audit committees as a tool of corporate governance in Libyan commercial banks by investigating various perceptions on this topic. The study is based on a questionnaire submitted to audit committees ‘members at Libyan commercial banks, directors of internal audit departments as well as members of board of directors at these banks in addition to a number of external auditors and academic staff from Libyan universities. The study reveals that the role of audit committees has to be shifted from traditional areas of accounting to a broader role including functions related to financial reporting, audit planning, support the independence of internal and external auditors, acting as a channel of communication between external auditors and board of directors, reviewing external audit, and evaluating internal control systems. Although the study is a starting point in developing a framework of good audit committees’ practices in Libya, it is believed that the adoption of its results can result in enhancing the corporate governance practices not only in the banking sector but also in the entire corporate sector in Libya.

Keywords: audit committees, corporate governance, commercial banks, Libya

Procedia PDF Downloads 403
2208 Effective Training System for Riding Posture Using Depth and Inertial Sensors

Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi

Abstract:

A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.

Keywords: posture correction, posture training, riding posture, riding simulator

Procedia PDF Downloads 476
2207 The Relationship Between Cultural Factors and Dividend Payouts of the Banks in Some Middle East Countries

Authors: Benjamin Bae, Mahdy Elhusseiny, Sherif El-Halaby

Abstract:

This study investigates the relationship between some cultural factors and the level of dividend payouts of banks in a number of Muslim countries. We examine whether cultural factors play any role in determining dividend payout policy in banks. The results suggest that banks in high masculinity countries tend to pay higher dividends than low masculinity countries. The results also show that banks in high uncertainty avoidance (UA) countries tend to pay lower dividends than high UA countries. Additionally, the results of this study indicate that banks in high long-term orientation (LTO) countries tend to pay lower dividends than low LTO countries. However, two other cultural factors of power distance (PD) and individualism do not have any incremental explanatory power on the dividend payouts. Overall, this research adds to our understanding of the bank’s dividend payout policies. First, evidence on the relationship between the cultural factors and bank’s level of dividend payouts should be useful to investors. Second, the findings of this study provide financial statement users with useful information about the bank’s dividend payout levels. Third, in general, it also adds to the accounting and finance literature on dividends.

Keywords: cultural factor, dividend payout, Hofstede index, bank industry

Procedia PDF Downloads 108
2206 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
2205 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 378
2204 Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography

Authors: Liping Qiu, Xiaofeng Zhang

Abstract:

The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9.

Keywords: ion chromatography, tomb, anion (F⁻, Cl⁻, SO₄²⁻, NO₃⁻), environmental protection

Procedia PDF Downloads 102
2203 Genetic Diversity of Norovirus Strains in Outpatient Children from Rural Communities of Vhembe District, South Africa, 2014-2015

Authors: Jean Pierre Kabue, Emma Meader, Afsatou Ndama Traore, Paul R. Hunter, Natasha Potgieter

Abstract:

Norovirus is now considered the most common cause of outbreaks of nonbacterial gastroenteritis. Limited data are available for Norovirus strains in Africa, especially in rural and peri-urban areas. Despite the excessive burden of diarrhea disease in developing countries, Norovirus infections have been to date mostly reported in developed countries. There is a need to investigate intensively the role of viral agents associated with diarrhea in different settings in Africa continent. To determine the prevalence and genetic diversity of Norovirus strains circulating in the rural communities in the Limpopo Province, South Africa and investigate the genetic relationship between Norovirus strains, a cross-sectional study was performed on human stools collected from rural communities. Between July 2014 and April 2015, outpatient children under 5 years of age from rural communities of Vhembe District, South Africa, were recorded for the study. A total of 303 stool specimens were collected from those with diarrhea (n=253) and without (n=50) diarrhea. NoVs were identified using real-time one-step RT-PCR. Partial Sequence analyses were performed to genotype the strains. Phylogenetic analyses were performed to compare identified NoVs genotypes to the worldwide circulating strains. Norovirus detection rate was 41.1% (104/253) in children with diarrhea. There was no significant difference (OR=1.24; 95% CI 0.66-2.33) in Norovirus detection between symptomatic and asymptomatic children. Comparison of the median CT values for NoV in children with diarrhea and without diarrhea revealed significant statistical difference of estimated GII viral load from both groups, with a much higher viral burden in children with diarrhea. To our knowledge, this is the first study reporting on the differences in estimated viral load of GII and GI NoV positive cases and controls. GII.Pe (n=9) were the predominant genotypes followed by GII.Pe/GII.4 Sydney 2012 (n=8) suspected recombinant and GII.4 Sydney 2012 variants(n=7). Two unassigned GII.4 variants and an unusual RdRp genotype GII.P15 were found. With note, the rare GIIP15 identified in this study has a common ancestor with GIIP15 strain from Japan previously reported as GII/untypeable recombinant strain implicated in a gastroenteritis outbreak. To our knowledge, this is the first report of this unusual genotype in the African continent. Though not confirmed predictive of diarrhea disease in this study, the high detection rate of NoV is an indication of subsequent exposure of children from rural communities to enteric pathogens due to poor sanitation and hygiene practices. The results reveal that the difference between asymptomatic and symptomatic children with NoV may possibly be related to the NoV genogroups involved. The findings emphasize NoV genetic diversity and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An uncommon GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe District/South Africa. NoV surveillance is required to help to inform investigations into NoV evolution, and to support vaccine development programmes in Africa.

Keywords: asymptomatic, common, outpatients, norovirus genetic diversity, sporadic gastroenteritis, South African rural communities, symptomatic

Procedia PDF Downloads 195
2202 Qualitative Analysis of Current Child Custody Evaluation Practices

Authors: Carolyn J. Ortega, Stephen E. Berger

Abstract:

The role of the custody evaluator is perhaps one of the most controversial and risky endeavors in clinical practice. Complaints filed with licensing boards regarding a child-custody evaluation constitute the second most common reason for such an event. Although the evaluator is expected to answer for the family-law court what is in the “best interest of the child,” there is a lack of clarity on how to establish this in any empirically validated manner. Hence, practitioners must contend with a nebulous framework in formulating their methodological procedures that inherently places them at risk in an already litigious context. This study sought to qualitatively investigate patterns of practice among doctoral practitioners conducting child custody evaluations in the area of Southern California. Ten psychologists were interviewed who devoted between 25 and 100% of their California private practice to custody work. All held Ph.D. degrees with a range of eight to 36 years of experience in custody work. Semi-structured interviews were used to investigate assessment practices, ensure adherence to guidelines, risk management, and qualities of evaluators. Forty-three Specific Themes were identified using Interpretive Phenomenological Analysis (IPA). Seven Higher Order Themes clustered on salient factors such as use of Ethics, Law, Guidelines; Parent Variables; Child Variables; Psychologist Variables; Testing; Literature; and Trends. Evaluators were aware of the ever-present reality of a licensure complaint and thus presented idiosyncratic descriptions of risk management considerations. Ambiguity about quantifying and validly tapping parenting abilities was also reviewed. Findings from this study suggested a high reliance on unstructured and observational methods in child custody practices.

Keywords: forensic psychology, psychological testing, assessment methodology, child custody

Procedia PDF Downloads 284
2201 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
2200 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia

Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui

Abstract:

Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.

Keywords: energy and water consumption, sustainability, urban development, urban metabolism

Procedia PDF Downloads 272
2199 Auditor with the Javanese Characters: Revealing the Relationship towards Its Client

Authors: Krisna Damayanti

Abstract:

Negative issue about the relationship between auditors and clients often heard. It arises in view of the rise of a variety of phenomena resulting from the audit practice of greed and do not appreciate the independence of the audit profession and professional code of ethics. It is a logical consequence of the practice of capitalism in accounting. The purpose of this paper would like to uncover the existing auditing practices in Indonesia, especially Java, which is associated with a strong influence of Javanese culture with reluctant/"shy", politely, "legowo", "ngemong" friendly, "not mentholo", "tepo seliro", "ngajeni", "acquiescent". The method used by interpretive approach that emphasizes the role of language, interpret and understand and see social reality as something other than a label, name or concept. Auditing practices in each country has a culture that will affect the standard set by those regulatory standards although there has been an adaptation of IAS. In Indonesia the majority of parties dominated by Javanesse racial regulators, so Java culture is embedded in every audit practices thus conditions in Java requires auditors to behave like that, sometimes interfere with standard Java code of conduct that must be executed by an auditor. Auditors who live in Java have the characters of Javanese culture that is hard to avoid in the audit practice. However, in practice, the auditor still are relevant in their profession.

Keywords: auditors, java, character, profession, code of ethics, client

Procedia PDF Downloads 441
2198 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 133
2197 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
2196 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
2195 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 347
2194 Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh

Authors: V. V. Prasada Rao P., K. Venkata Subbaiah, J. Sudhir Kumar

Abstract:

Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW.

Keywords: biodegradable waste, dumping sites, management strategy, municipal solid waste (MSW), MSW rules, vermicompost

Procedia PDF Downloads 307
2193 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 134
2192 Sudden Death in Young Patients: A Study of 312 Autopsy Cases

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, S. Saadi, R. Dhouieb, A. Chadly

Abstract:

Introduction: Sudden death in young is seen as a dramatic phenomenon requiring knowledge of its impact and determining their causes. Aim: We aim to study the epidemiological characteristics of sudden death in young, and to discuss the mechanism and the importance of autopsy in these situations. Material and methods: We performed a retrospective cohort study using autopsy data from the department of forensic medicine at the University Hospital of Fattouma Bourguiba, Monastir-Tunisia. A review of all autopsies performed during 23 years was done. In each case, clinical information and circumstances of death were obtained. We have included all sudden death in persons aged between 1 year and 35 years for the male and from one year to 45 years for female. We collected 312 cases of sudden death during the studied period. The collected data were processed using SPSS 20. The significance level was set at 0.05. Results: Thirty-two cases of cardiac ischemic sudden death have been collected. Myocardial infarction was the second cause of sudden death in young patients. There was a male predominance. The most affected subjects were aged between 25-45 years. The death occurred more frequently at rest. Coronary artery disease has been discovered in twenty-four cases (75%). A severe coronary artery disease was observed in two children with medical history of familial hypercholesterolemia. The myocardial infarction occurred in healthy coronary arteries in eight cases. An anomalous course of coronary arteries, in particular, myocardial bridging, was found in eight cases (25%). Toxicological screening was negative in all cases. Second cause of death was hypertrophic cardiomyopathy. Neurological and respiratory causes of death were implicated respectively in 10% and 15%. Conclusion: Identifying epidemiological characteristics of sudden death in this population is important for guiding approaches to prevention that must be based on dietary hygienic measures and the control of cardiovascular risk factors.

Keywords: autopsy, cardiac death, sudden death, young

Procedia PDF Downloads 239
2191 Aligning the Sustainability Policy Areas for Decarbonisation and Value Addition at an Organisational Level

Authors: Bishal Baniya

Abstract:

This paper proposes the sustainability related policy areas for decarbonisation and value addition at an organizational level. General and public sector organizations around the world are usually significant in terms of consuming resources and producing waste – powered through their massive procurement capacity. However, these organizations also possess huge potential to cut resource use and emission as many of these organizations controls supply chain of goods/services. They can therefore be a trend setter and can easily lead other major economic sectors such as manufacturing, construction and mining, transportation, etc. in pursuit towards paradigm shift for sustainability. Whilst the environmental and social awareness has improved in recent years and they have identified policy areas to improve the organizational environmental performance, value addition to the core business of the organization hasn’t been understood and interpreted correctly. This paper therefore investigates ways to align sustainability policy measures in a way that it creates better value proposition relative to benchmark by accounting both eco and social efficiency. Preliminary analysis shows co-benefits other than resource and cost savings fosters the business cases for organizations and this can be achieved by better aligning the policy measures and engaging stakeholders.

Keywords: policy measures, environmental performance, value proposition, organisational level

Procedia PDF Downloads 150
2190 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 434
2189 Management of Religious Endowment Properties for Sustainable Development: A Case Study of Region of Kinniya, Sri Lanka

Authors: Muhammed Buhary Muhammed Thabith, Nor Asiah Mohamad

Abstract:

Religious Endowment (RE) (Waqf) has played an essential role in Islamic history and made a significant impact on the society, particularly in terms of socioeconomics. This has been made possible by having appropriate management of the RE propertiesin order to achieve the Sustainable Development Goals (SDGs), and the region of Kinniya, Sri Lanka, is not an exception. However, since the last Religious Endowment Act of 1982, a considerable deterioration has taken place, and cases of dormant properties have increased. This study proposes a conceptual model based on the SDGs initiatives to fill in the gaps. It analyses the application of the current RE properties management and identifies the issues as well as the challenges in the implementation of the RE Act. It adopts a doctrinal analysis involving the primary and secondary data, including statutes, practices, case law, and reports. The findings show that there are various management modes adopted by the stakeholders of RE. Some approaches are in tandem with the rules and practices of the SDGs with emphasis on support and cooperation from the community, private sector, and the government. Several initiatives such as awareness on RE, legal enforcements without fears and favours, as well as accounting and auditing, are recommended to minimize problems in managing the RE towards attaining the SDGs.

Keywords: sustainable development goals (SDGs), management, endowment, Sri Lanka

Procedia PDF Downloads 104
2188 Ways for the Development of the Audit Quality Control System through the Analysis of Ongoing Problems, Experience and Challenges: Example of the Republic of Georgia

Authors: Levan Sabauri

Abstract:

Audit is an independent inspection of the financial statement of the audited person and expresses the opinion of an auditor on the reliability of this statement. The auditor’s activity (auditor’s service) is realized by auditing organizations, individual auditors in connection to conduction of an audit and rendering of audit accompanying services. The profession of auditor means a high level of responsibility for rendered service. Results of decisions made by information users depend on the quality of the auditor’s conclusion. Owners, investors, creditors, and society rely on the opinion of the auditor under the condition that inspection was conducted with good quality. Therefore, the existence of the well-functioning audit quality control system for the administering of the audit is an important issue. An efficient audit quality control system is a substantial challenge that many countries face worldwide, especially those states where these systems are being formed within the respective reform program. The presented article reflects on the best practices of the leading countries, the assumptions and recommendations for the financial accounting, reporting and audit; current reforms in Georgia are made based on this comparative analysis.

Keywords: audit quality control, audit program, financial statement, perspective analysis

Procedia PDF Downloads 161
2187 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models

Authors: Alessandra Marcelletti, Giovanni Trovato

Abstract:

Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.

Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification

Procedia PDF Downloads 264