Search results for: content- and task-based learning
10323 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 16710322 Investigating Secondary Students’ Attitude towards Learning English
Authors: Pinkey Yaqub
Abstract:
The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude
Procedia PDF Downloads 22810321 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 5310320 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection
Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol
Abstract:
The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress
Procedia PDF Downloads 22510319 Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre
Authors: Mohammed Saidu, Afiz Busari, Ali Yuzir, Mohd Razman Salim
Abstract:
Degradation of agricultural residues from palm oil industry is increasing due to its expansion. Lignocelloulosic waste from these industry represent large amount of unutilized resources, this is due to their high lignin content. Since, white rot fungi are capable of degrading the lignin, its potential to degradation was accessed for upgrading it. The lignocellluloses content was measured before and after biodegradation and the rate of reduction was determined. From the results of biodegradation, it was observed that hemicellulose reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from the initials lignocelluloses contents. Thus, to improve the digestibility of palm oil mesocarp fibre, treatment by white rot-fungi is recommended.Keywords: biological, fungi, lignocelluses, oil palm
Procedia PDF Downloads 31110318 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English
Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot
Abstract:
This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances
Procedia PDF Downloads 14910317 Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 68510316 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies
Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im
Abstract:
The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning
Procedia PDF Downloads 6510315 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms
Authors: Alica Höpken, Hergen Pargmann
Abstract:
The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning
Procedia PDF Downloads 12810314 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 54910313 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength
Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari
Abstract:
Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settingsKeywords: electrochemical condition, ionic strength, viscosity, xhanthan gum
Procedia PDF Downloads 18910312 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum
Authors: R. Bawazir, P. Jones
Abstract:
Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework
Procedia PDF Downloads 32110311 Proximate, Functional and Sensory Evaluation of Some Brands of Instant Noodles in Nigeria
Authors: Olakunle Moses Makanjuola, Adebola Ajayi
Abstract:
Noodles are made from unleavened dough, rolled flat and cut into shapes. The instant noodle market is growing fast in Asian countries and is gaining popularity in the western market. This project reports on the proximate functional and sensory evaluation of different brands of instant noodles in Nigeria. The comparisons were based on proximate functional and sensory evaluation of the product. The result obtained from the proximate analysis showed that sample QHR has the highest moisture content, sample BMG has the highest protein content, sample CPO has the highest fat content, sample. The obtained result from the functional properties showed that sample BMG (Dangote noodles) had the highest volume increase after cooking due to its high swelling capacity, high water absorption capacity and high hydration capacity. Sample sensory analysis of the noodles showed that all the samples are of significant difference (at P < 0.05) in terms of colour, texture, and aroma but there is no significant difference in terms of taste and overall acceptability. Sample QHR (Indomie noodles) is the most preferred by the panelists.Keywords: proximate, functional, sensory evaluation, noodles
Procedia PDF Downloads 25310310 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic
Authors: Jansirani Natarajan, Mickael Antoinne Joseph
Abstract:
The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.Keywords: engagement, perception, emergency remote learning, COVID-19
Procedia PDF Downloads 6310309 Navigating the Digital Landscape: An Ethnographic Content Analysis of Black Youth's Encounters with Racially Traumatic Content on Social Media
Authors: Tiera Tanksley, Amanda M. McLeroy
Abstract:
The advent of technology and social media has ushered in a new era of communication, providing platforms for news dissemination and cause advocacy. However, this digital landscape has also exposed a distressing phenomenon termed "Black death," or trauma porn. This paper delves into the profound effects of repeated exposure to traumatic content on Black youth via social media, exploring the psychological impacts and potential reinforcing of stereotypes. Employing Critical Race Technology Theory (CRTT), the study sheds light on algorithmic anti-blackness and its influence on Black youth's lives and educational experiences. Through ethnographic content analysis, the research investigates common manifestations of Black death encountered online by Black adolescents. Findings unveil distressing viral videos, traumatic images, racial slurs, and hate speech, perpetuating stereotypes. However, amidst the distress, the study identifies narratives of activism and social justice on social media platforms, empowering Black youth to engage in positive change. Coping mechanisms and community support emerge as significant factors in navigating the digital landscape. The study underscores the need for comprehensive interventions and policies informed by evidence-based research. By addressing algorithmic anti-blackness and promoting digital resilience, the paper advocates for a more empathetic and inclusive online environment. Understanding coping mechanisms and community support becomes imperative for fostering mental well-being among Black adolescents navigating social media. In education, the implications are substantial. Acknowledging the impact of Black death content, educators play a pivotal role in promoting media literacy and digital resilience. Creating inclusive and safe online spaces, educators can mitigate negative effects and encourage open discussions about traumatic content. The application of CRTT in educational technology emphasizes dismantling systemic biases and promoting equity. In conclusion, this study calls for educators to be cognizant of the impact of Black death content on social media. By prioritizing media literacy, fostering digital resilience, and advocating for unbiased technologies, educators contribute to an inclusive and just educational environment for all students, irrespective of their race or background. Addressing challenges related to Black death content proactively ensures the well-being and mental health of Black adolescents, fostering an empathetic and inclusive digital space.Keywords: algorithmic anti-Blackness, digital resilience, media literacy, traumatic content
Procedia PDF Downloads 5610308 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE
Procedia PDF Downloads 42810307 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria
Authors: Khaled Mawardi
Abstract:
Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.Keywords: microwaves, extraction, Laurel oil, solvent-free
Procedia PDF Downloads 6710306 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 24010305 The Effects of External Daminozide (ALAR) Application on Nutrient Contents in Memecik Olive Trees
Authors: Sahriye Sonmez, Salih Ulger, Mustafa Kaplan, Mustafa Karhan
Abstract:
The objective of this study was to investigate the effects of external ALAR application on nutrients contents in leaf and node in ‘on (bearing)’ and ‘off (non-bearing)’ years in Memecik olive trees. For this purpose; 2000 mg L-1 ALAR was externally applied to Memecik olive trees, and leaf and node samples from olive trees were taken during the induction, initiation and differentiation periods in ‘on’ and ‘off’ years. Nutrients contents (N, P, K, Ca, Mg, Fe, Mn, Zn and Cu) in leaf and node samples were determined. The K, Ca, Mg, Fe, Mn, Zn and Cu contents were determined by atomic absorption spectrophotometry, Nitrogen by Kjeldahl procedure, and P by a spectrophotometric method. The results showed that the N, Ca, Mg, Fe, Mn, Zn and Cu contents in ‘on’ year were higher than ‘off’ year while the K contents in ‘on’ year were lower than ‘off ‘ year, but the P content was not different. The N, Ca, Mg, Fe and Mn contents in leaf samples were higher in the node samples except for K while the P, Zn and Cu contents were not different. The N, K, Ca, Fe, Mn, Zn and Cu contents were lowest during the initiation period while the P content was highest in this period. The Mg content was not different in all period.Keywords: bearing, differentiation period, induction period, initiation period, non bearing, olive
Procedia PDF Downloads 45310304 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students
Authors: Majed A. Alsalem
Abstract:
In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.Keywords: deaf and hard of hearing, digital books, literacy, technology
Procedia PDF Downloads 48910303 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 24410302 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 52310301 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 2110300 Teaching Buddhist Meditation: An Investigation into Self-Learning Methods
Authors: Petcharat Lovichakorntikul, John Walsh
Abstract:
Meditation is in the process of becoming a globalized practice and its benefits have been widely acknowledged. The first wave of internationalized meditation techniques and practices was represented by Chan and Zen Buddhism and a new wave of practice has arisen in Thailand as part of the Phra Dhammakaya temple movement. This form of meditation is intended to be simple and straightforward so that it can easily be taught to people unfamiliar with the basic procedures and philosophy. This has made Phra Dhammakaya an important means of outreach to the international community. One notable aspect is to encourage adults to become like children to perform it – that is, to return to a naïve state prior to the adoption of ideology as a means of understanding the world. It is said that the Lord Buddha achieved the point of awakening at the age of seven and Phra Dhammakaya has a program to teach meditation to both children and adults. This brings about the research question of how practitioners respond to the practice of meditation and how should they be taught? If a careful understanding of how children behave can be achieved, then it will help in teaching adults how to become like children (albeit idealized children) in their approach to meditation. This paper reports on action research in this regard. Personal interviews and focus groups are held with a view to understanding self-learning methods with respect to Buddhist meditation and understanding and appreciation of the practices involved. The findings are considered in the context of existing knowledge about different learning techniques among people of different ages. The implications for pedagogical practice are discussed and learning methods are outlined.Keywords: Buddhist meditation, Dhammakaya, meditation technique, pedagogy, self-learning
Procedia PDF Downloads 47810299 An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students
Authors: Wafa Labib
Abstract:
Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.Keywords: teaching method, architecture, learning style, multi-media
Procedia PDF Downloads 43710298 Creative Skills Supported by Multidisciplinary Learning: Case Innovation Course at the Seinäjoki University of Applied Sciences
Authors: Satu Lautamäki
Abstract:
This paper presents findings from a multidisciplinary course (bachelor level) implemented at Seinäjoki University of Applied Sciences, Finland. The course aims to develop innovative thinking of students, by having projects given by companies, using design thinking methods as a tool for creativity and by integrating students into multidisciplinary teams working on the given projects. The course is obligatory for all first year bachelor students across four faculties (business and culture, food and agriculture, health care and social work, and technology). The course involves around 800 students and 30 pedagogical coaches, and it is implemented as an intensive one-week course each year. The paper discusses the pedagogy, structure and coordination of the course. Also, reflections on methods for the development of creative skills are given. Experts in contemporary, global context often work in teams, which consist of people who have different areas of expertise and represent various professional backgrounds. That is why there is a strong need for new training methods where multidisciplinary approach is at the heart of learning. Creative learning takes place when different parties bring information to the discussion and learn from each other. When students in different fields are looking for professional growth for themselves and take responsibility for the professional growth of other learners, they form a mutual learning relationship with each other. Multidisciplinary team members make decisions both individually and collectively, which helps them to understand and appreciate other disciplines. Our results show that creative and multidisciplinary project learning can develop diversity of knowledge and competences, for instance, students’ cultural knowledge, teamwork and innovation competences, time management and presentation skills as well as support a student’s personal development as an expert. It is highly recommended that higher education curricula should include various studies for students from different study fields to work in multidisciplinary teams.Keywords: multidisciplinary learning, creative skills, innovative thinking, project-based learning
Procedia PDF Downloads 10810297 Designing a Motivated Tangible Multimedia System for Preschoolers
Authors: Kien Tsong Chau, Zarina Samsudin, Wan Ahmad Jaafar Wan Yahaya
Abstract:
The paper examined the capability of a prototype of a tangible multimedia system that was augmented with tangible objects in motivating young preschoolers in learning. Preschoolers’ learning behaviour is highly captivated and motivated by external physical stimuli. Hence, conventional multimedia which solely dependent on digital visual and auditory formats for knowledge delivery could potentially place them in inappropriate state of circumstances that are frustrating, boring, or worse, impede overall learning motivations. This paper begins by discussion with the objectives of the research, followed by research questions, hypotheses, ARCS model of motivation adopted in the process of macro-design, and the research instrumentation, Persuasive Multimedia Motivational Scale was deployed for measuring the level of motivation of subjects towards the experimental tangible multimedia. At the close, a succinct description of the findings of a relevant research is provided. In the research, a total of 248 preschoolers recruited from seven Malaysian kindergartens were examined. Analyses revealed that the tangible multimedia system improved preschoolers’ learning motivation significantly more than conventional multimedia. Overall, the findings led to the conclusion that the tangible multimedia system is a motivation conducive multimedia for preschoolers.Keywords: tangible multimedia, preschoolers, multimedia, tangible objects
Procedia PDF Downloads 60910296 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 13910295 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.Keywords: antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content
Procedia PDF Downloads 26910294 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 177