Search results for: comprehensive feature extraction
3857 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 2093856 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis
Authors: Andres Frederic
Abstract:
We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.Keywords: occupational stress, stress management, physiological measurement, accident prevention
Procedia PDF Downloads 4303855 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia PDF Downloads 4993854 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format
Procedia PDF Downloads 3773853 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
Authors: M. D. Haneef, R. B. Randall, Z. Peng
Abstract:
Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction
Procedia PDF Downloads 3103852 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization
Procedia PDF Downloads 3293851 From Protector to Violator: Assessing State's Role in Protecting Freedom of Religion in Indonesia
Authors: Manotar Tampubolon
Abstract:
Indonesia is a country that upholds the law, human rights and religious freedom. The freedom that implied in various laws and constitution (Undang-undang 1945) is not necessarily applicable in practice of religious life. In one side, the state has a duty as protector and guarantor of freedom, on the other side, however, it turns into one of the actors of freedom violations of religion minority. State action that interferes freedom of religion is done in various ways both intentionally or negligently or not to perform its obligations in the enforcement of human rights (human rights due diligence). Besides the state, non-state actors such as religious organizations, individuals also become violators of the rights of religious freedom. This article will discuss two fundamental issues that interfere freedom of religion in Indonesia after democratic era. In addition, this article also discusses a comprehensive state policy that discriminates minority religions to manifest their faith.Keywords: religious freedom, constitution, minority faith, state actor
Procedia PDF Downloads 4033850 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis
Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan
Abstract:
Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.Keywords: social support, anxiety, depression, COVID-19, meta-analysis
Procedia PDF Downloads 623849 Detecting Paraphrases in Arabic Text
Authors: Amal Alshahrani, Allan Ramsay
Abstract:
Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)
Procedia PDF Downloads 3863848 Rice Husk Silica as an Alternative Material for Renewable Energy
Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen
Abstract:
Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).Keywords: siliceous, leached, biomass, solid-liquid extraction
Procedia PDF Downloads 703847 Rural-Urban Education Gap and Left-Behind Children Education in China
Authors: Jiawei Liang
Abstract:
Against the backdrop of China's burgeoning migration from rural to urban areas, a demographic group has emerged in China, which is called left-behind children. Due to many reasons, including the issue of the rural-urban education gap, the education of left-behind children has been below the national education average. In this situation, the issue has attracted the attention of researchers and policymakers. In order to gain a comprehensive understanding of this issue, this paper adopts an analytical approach to studying the rural-urban education gap and left-behind children in rural China. The paper first introduces the current situation of migration, the education gap, and left-behind children within China. Then, it further explores the causes of these two questions and barriers as well as the consequences for left-behind children. Finally, the study offers some suggestions to alleviate the urban-rural gap and the current situation of education for left-behind children in rural areas, which will hopefully shed light on the issue of left-behind children in China and the urban-rural education gap.Keywords: left-behind children, rural China, education improvement, Hukou policy, rural-urban education gap
Procedia PDF Downloads 1043846 Collaborative and Context-Aware Learning Approach Using Mobile Technology
Authors: Sameh Baccari, Mahmoud Neji
Abstract:
In recent years, the rapid developments on mobile devices and wireless technologies enable new dimension capabilities for the learning domain. This dimension facilitates people daily activities and shortens the distances between individuals. When these technologies have been used in learning, a new paradigm has been emerged giving birth to mobile learning. Because of the mobility feature, m-learning courses have to be adapted dynamically to the learner’s context. The main challenge in context-aware mobile learning is to develop an approach building the best learning resources according to dynamic learning situations. In this paper, we propose a context-aware mobile learning system called Collaborative and Context-aware Mobile Learning System (CCMLS). It takes into account the requirements of Mobility, Collaboration and Context-Awareness. This system is based on the semantic modeling of the learning context and the learning content. The adaptation part of this approach is made up of adaptation rules to propose and select relevant resources, learning partners and learning activities based not only on the user’s needs, but also on its current context.Keywords: mobile learning, mobile technologies, context-awareness, collaboration, semantic web, adaptation engine, adaptation strategy, learning object, learning context
Procedia PDF Downloads 3083845 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi
Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel
Abstract:
Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oil- hydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.Keywords: essential oil, Eucalyptus camendulensis, bacteria and fungi, red river gum
Procedia PDF Downloads 2343844 Investigating Causes of Pavement Deterioration in Khartoum State, Sudan
Authors: Magdi Mohamed Eltayeb Zumrawi
Abstract:
It is quite essential to investigate the causes of pavement deterioration in order to select the proper maintenance technique. The objective of this study was to identify factors cause deterioration of recently constructed roads in Khartoum state. A comprehensive literature concerning the factors of road deterioration, common road defects and their causes were reviewed. Three major road projects with different deterioration reasons were selected for this study. The investigation involved field survey and laboratory testing on those projects to examine the existing pavement conditions. The results revealed that the roads investigated experienced severe failures in the forms of cracks, potholes and rutting in the wheel path. The causes of those failures were found mainly linked to poor drainage, traffic overloading, expansive subgrade soils and the use of low quality materials in construction. Based on the results, recommendations were provided to help highway engineers in selecting the most effective repair techniques for specific kinds of distresses.Keywords: pavement, deterioration, causes, failures
Procedia PDF Downloads 3543843 Conceptualizing IoT Based Framework for Enhancing Environmental Accounting By ERP Systems
Authors: Amin Ebrahimi Ghadi, Morteza Moalagh
Abstract:
This research is carried out to find how a perfect combination of IoT architecture (Internet of Things) and ERP system can strengthen environmental accounting to incorporate both economic and environmental information. IoT (e.g., sensors, software, and other technologies) can be used in the company’s value chain from raw material extraction through materials processing, manufacturing products, distribution, use, repair, maintenance, and disposal or recycling products (Cradle to Grave model). The desired ERP software then will have the capability to track both midpoint and endpoint environmental impacts on a green supply chain system for the whole life cycle of a product. All these enable environmental accounting to calculate, and real-time analyze the operation environmental impacts, control costs, prepare for environmental legislation and enhance the decision-making process. In this study, we have developed a model on how to use IoT devices in life cycle assessment (LCA) to gather emissions, energy consumption, hazards, and wastes information to be processed in different modules of ERP systems in an integrated way for using in environmental accounting to achieve sustainability.Keywords: ERP, environmental accounting, green supply chain, IOT, life cycle assessment, sustainability
Procedia PDF Downloads 1723842 Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification
Authors: Benjamin Anderson-Sackaney, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes.Keywords: sensor pattern noise, source camera identification, photo response non-uniformity, anisotropic diffusion, peak to correlation energy ratio
Procedia PDF Downloads 4413841 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles
Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote
Abstract:
A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles
Procedia PDF Downloads 2383840 Optimization of Multiplier Extraction Digital Filter On FPGA
Authors: Shiksha Jain, Ramesh Mishra
Abstract:
One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table
Procedia PDF Downloads 3903839 Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.)
Authors: Basitah Taif
Abstract:
This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples.Keywords: natural dye, freeze-drying, Garcinia mangostana Linn, mordanting
Procedia PDF Downloads 4623838 Elevating Environmental Impact Assessment through Remote Sensing in Engineering
Authors: Spoorthi Srupad
Abstract:
Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors.Keywords: environmental impact assessment, engineering applications, sustainability, environmental monitoring, remote sensing, geographic information systems, environmental management
Procedia PDF Downloads 923837 Impact of the Energy Transition on Security of Supply - A Case Study of Vietnam Power System in 2030
Authors: Phuong Nguyen, Trung Tran
Abstract:
Along with the global ongoing energy transition, Vietnam has indicated a strong commitment in the last COP events on the zero-carbon emission target. However, it is a real challenge for the nation to replace fossil-fired power plants by a significant amount of renewable energy sources (RES) while maintaining security of supply. The unpredictability and variability of RES would cause technical issues for supply-demand balancing, network congestions, system balancing, among others. It is crucial to take these into account while planning the future grid infrastructure. This study will address both generation and transmission adequacy and reveal a comprehensive analysis about the impact of ongoing energy transition on the development of Vietnam power system in 2030. This will provide insight for creating an secure, stable, and affordable pathway for the country in upcoming years.Keywords: generation adequacy, transmission adequacy, security of supply, energy transition
Procedia PDF Downloads 863836 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers
Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck
Abstract:
Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam
Procedia PDF Downloads 3513835 Molecular Timeline Analysis of Acropora: Review of Coral Development, Growth and Environmental Resilience
Authors: Ariadna Jalife Gómez, Claudia Rangel Escareño
Abstract:
The Acropora coral genus has experienced impactful consequences of climate change, especially in terms of population reduction related to limited thermal tolerance, however, comprehensive resources for genetic responses of these corals to phenomena are lacking. Thus, this study aims to identify key genes expressed across different developmental stages and conditions of Acropora spp. highlighted in published studies given the shared tissue and polyp-level characteristics among the species comprising the genus, as it is hypothesized that common reproductive, developmental, and stress response mechanisms are conserved. The presented resources, aiming to streamline the genus’ biology, elucidate several signaling pathways of development and stress response that contribute to the understanding of researchers of overall biological responses, while providing a genetic framework for potential further studies that might contribute to reef preservation strategies.Keywords: acropora, development, genes, transcriptomics
Procedia PDF Downloads 103834 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector
Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi
Abstract:
In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture
Procedia PDF Downloads 4323833 Gamification of a Business Intelligence Tool
Authors: Stephen Miller
Abstract:
The act of applying game mechanics and dynamics (which have been traditionally used in video games) into business applications is being widely trialed in an effort to make conventional business software a bit more participative, fun and engaging. This new trend, named ‘gamification’ has its believers and of course, its critics who still need convincing that the concept is an effective and beneficial business tool worthy of investment. The literature reveals that user engagement of business intelligence (BI) tools is much lower than expected and investors are failing to get a good return on their investment (ROI). So, a software prototype will be designed and developed to add gamification to a BI tool to determine its effect upon the user engagement levels of test participants. The experimental study will be evaluated using the comprehensive User Engagement Scale (UES) to see if there are improvements in areas such as; aesthetics, perceived usability, endurability, novelty, felt involvement and focused attention. The results of this unique study should demonstrate whether or not ‘gamifying’ a BI tool has the potential to increase an individual’s motivation to use BI software more often.Keywords: business intelligence, gamification, human computer interaction, user engagement
Procedia PDF Downloads 5853832 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 663831 Investigating Real Ship Accidents with Descriptive Analysis in Turkey
Authors: İsmail Karaca, Ömer Söner
Abstract:
The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics
Procedia PDF Downloads 1393830 The Study of Fine and Nanoscale Gold in the Ores of Primary Deposits and Gold-Bearing Placers of Kazakhstan
Authors: Omarova Gulnara, Assubayeva Saltanat, Tugambay Symbat, Bulegenov Kanat
Abstract:
The article discusses the problem of developing a methodology for studying thin and nanoscale gold in ores and placers of primary deposits, which will allow us to develop schemes for revealing dispersed gold inclusions and thus improve its recovery rate to increase the gold reserves of the Republic of Kazakhstan. The type of studied gold, is characterized by a number of features. In connection with this, the conditions of its concentration and distribution in ore bodies and formations, as well as the possibility of reliably determining it by "traditional" methods, differ significantly from that of fine gold (less than 0.25 microns) and even more so from that of larger grains. The mineral composition of rocks (metasomatites) and gold ore and the mineralization associated with them were studied in detail on the Kalba ore field in Kazakhstan. Mineralized zones were identified, and samples were taken from them for analytical studies. The research revealed paragenetic relationships of newly formed mineral formations at the nanoscale, which makes it possible to clarify the conditions for the formation of deposits with a particular type of mineralization. This will provide significant assistance in developing a scheme for study. Typomorphic features of gold were revealed, and mechanisms of formation and aggregation of gold nanoparticles were proposed. The presence of a large number of particles isolated at the laboratory stage from concentrates of gravitational enrichment can serve as an indicator of the presence of even smaller particles in the object. Even the most advanced devices based on gravitational methods for gold concentration provide extraction of metal at a level of around 50%, while pulverized metal is extracted much worse, and gold of less than 1 micron size is extracted at only a few percent. Therefore, when particles of gold smaller than 10 microns are detected, their actual numbers may be significantly higher than expected. In particular, at the studied sites, enrichment of slurry and samples with volumes up to 1 m³ was carried out using a screw lock or separator to produce a final concentrate weighing up to several kilograms. Free gold particles were extracted from the concentrates in the laboratory using a number of processes (magnetic and electromagnetic separation, washing with bromoform in a cup to obtain an ultracontentrate, etc.) and examined under electron microscopes to investigate the nature of their surface and chemical composition. The main result of the study was the detection of gold nanoparticles located on the surface of loose metal grains. The most characteristic forms of gold secretions are individual nanoparticles and aggregates of different configurations. Sometimes, aggregates form solid dense films, deposits, and crusts, all of which are confined to the negative forms of the nano- and microrelief on the surfaces of golden. The results will provide significant knowledge about the prevalence and conditions for the distribution of fine and nanoscale gold in Kazakhstan deposits, as well as the development of methods for studying it, which will minimize losses of this type of gold during extraction. Acknowledgments: This publication has been produced within the framework of the Grant "Development of methodology for studying fine and nanoscale gold in ores of primary deposits, placers and products of their processing" (АР23485052, №235/GF24-26).Keywords: electron microscopy, microminerology, placers, thin and nanoscale gold
Procedia PDF Downloads 213829 Antimicrobial Activity of Olive Mill Wastewater Fractions
Authors: Chahinez Ait Si Said, Ouassila Touafek, Mohamed Reda Zahi, Smain Sabour, Mohamed El Hattab
Abstract:
Oil mill wastewater (OMW) is a major effluent of the olive industry resulting from olive oil extraction which is a great source for the development of new drugs. The present study aimed to evaluate the antimicrobial activity of seven different fractions separated from OMW extract. The sample was recovered from an oil mill in the Blida region (Algeria). A crude ethyl acetate extract was prepared from OMW according to a well-established protocol; the yield of the extract obtained was 4%. From the extract, different fractions were prepared by fractionating the total extract with an open column chromatography. The obtained fractions were submitted to antimicrobial activity screening in a comparative purpose. All the fractions obtained show great antimicrobial potential. Phytochemical study of the different fractions was assessed by evaluating the total phenolic compounds for all fractions studied as the main compounds found in OMW were phenols like hydroxytyrosol, tyrosol, phenolic acids like caffeic, quinic and ferulic acids which show great therapeutic activities. Keywords: olive mill wastewater, fractionation, total phenolic compound, antimicrobial activity
Procedia PDF Downloads 1043828 Solar Pond: Some Issues in Their Management and Mathematical Description
Authors: A. A. Abdullah, K. A. Lindsay
Abstract:
The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond.Keywords: aqueous sodium chloride, constitutive expression, solar pond, salt-gradient
Procedia PDF Downloads 327