Search results for: coastal features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4510

Search results for: coastal features

2290 Improving Software Technology to Support Release Process in Global Software Development Environment: An Experience Report

Authors: Hualter Barbosa, Bruno Bonifacio

Abstract:

The process of globalization and new business has transformed the dynamics of software development. To meet the new demands, the software industry has adapted new methodologies that can shorten development cycles to ensure greater competitiveness. Given this scenario, Global Software Development (GSD) has become a strategic element for new products' success. However, the reliability, opportunity, and perceived value can be influenced substantially with the automation of steps in the development process activities. In this sense, the development of new technologies can help developers and managers to improve the quality of development. This paper presents a report on improving one of the release process activities of Sidia's mobile product area using software technology. The objective is to present the improvement of the CLCATCH tool developed based on experimental studies and qualitative analysis on the points of improvement for the release process in Android update projects for Samsung mobile devices. The results show improvement for the new version and approach of the tool, with points that can facilitate new features of the proposed technology.

Keywords: Android updated, empirical studies, GSD, process improvement

Procedia PDF Downloads 142
2289 Professional Working Conditions, Mental Health And Mobility In The Hungarian Social Sector Preliminary Findings From A Multi-method Study

Authors: Ágnes Győri, Éva Perpék, Zsófia Bauer, Zsuzsanna Elek

Abstract:

The aim of the research (funded by Hungarian national grant, NFKI- FK 138315) is to examine the professional mobility, mental health and work environment of social workers with a complex approach. Previous international and Hungarian research has pointed out that those working in the helping professions are strongly exposed to the risk of emotional-mental-physical exhaustion due to stress. Mental and physical strain, as well as lack of coping (can) cause health problems, but its role in career change and high labor turnover has also been proven. Even though satisfaction with working conditions of those employed in the human service sector in the context of the stress burden has been researched extensively, there is a lack of large-sample international and Hungarian domestic studies exploring the effects of profession-specific conditions. Nor has it been examined how the specific features of the social profession and mental health affect the career mobility of the professionals concerned. In our research, these factors and their correlations are analyzed by means of mixed methodology, utilizing the benefits of netnographic big data analysis and a sector-specific quantitative survey. The netnographic analysis of open web content generated inside and outside the social profession offers a holistic overview of the influencing factors related to mental health and the work environment of social workers. On the one hand, the topics and topoi emerging in the external discourse concerning the sector are examined, and on the other hand, focus on mentions and streams of comments regarding the profession, burnout, stress, coping, as well as labor turnover and career changes among social professionals. The analysis focuses on new trends and changes in discourse that have emerged during and after the pandemic. In addition to the online conversation analysis, a survey of social professionals with a specific focus has been conducted. The questionnaire is based on input from the first two research phases. The applied approach underlines that the mobility paths of social professionals can only be understood if, apart from the general working conditions, the specific features of social work and the effects of certain aspects of mental health (emotional-mental-physical strain, resilience) are taken into account as well. In this paper, the preliminary results from this innovative methodological mix are presented, with the aim of highlighting new opportunities and dimensions in the research on social work. A gap in existing research is aimed to be filled both on a methodological and empirical level, and the Hungarian domestic findings can create a feasible and relevant framework for a further international investigation and cross-cultural comparative analysis. Said results can contribute to the foundation of organizational and policy-level interventions, targeted programs whereby the risk of burnout and the rate of career abandonment can be reduced. Exploring different aspects of resilience and mapping personality strengths can be a starting point for stress-management, motivation-building, and personality-development training for social professionals.

Keywords: burnout, mixed methods, netnography, professional mobility, social work

Procedia PDF Downloads 143
2288 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
2287 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 462
2286 Alternative Dispute Resolution Procedures for International Conflicts about Industrial Design

Authors: Moreno Liso Lourdes

Abstract:

The industrial design protects the appearance of part or all of a product resulting from the features of, in particular, the lines, contours, colors, shape, texture or materials of the product itself or its ornamentation. The industrial property offers a different answer depending on the characteristics of the shape object of protection possible, including the trademark and industrial design. There are certain cases where the trademark right invalidate the exclusive right of the industrial design. This can occur in the following situations: 1st) collected as a sign design and trademarked; and 2nd) you want to trademark and protected as a form design (either registered or unregistered). You can either get a trade mark or design right in the same sign or form, provided it meets the legal definition of brand and design and meets the requirements imposed for the protection of each of them, even able to produce an overlap of protection. However, this double protection does not have many advantages. It is, therefore, necessary to choose the best form of legal protection according to the most adequate ratios. The diversity of rights that can use the creator of an industrial design to protect your job requires you to make a proper selection to prevent others, especially their competitors, taking advantage of the exclusivity that guarantees the law. It is necessary to choose between defending the interests of the parties through a judicial or extrajudicial procedure when the conflict arises. In this paper, we opted for the defense through mediation.

Keywords: industrial design, ADR, Law, EUIPO

Procedia PDF Downloads 241
2285 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
2284 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography

Authors: Merad Boudia Omar Rafik, Feham Mohammed

Abstract:

Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysis

Keywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption

Procedia PDF Downloads 297
2283 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role

Procedia PDF Downloads 97
2282 Evaluation of Low-Global Warming Potential Refrigerants in Vapor Compression Heat Pumps

Authors: Hamed Jafargholi

Abstract:

Global warming presents an immense environmental risk, causing detrimental impacts on ecological systems and putting coastal areas at risk. Implementing efficient measures to minimize greenhouse gas emissions and the use of fossil fuels is essential to reducing global warming. Vapor compression heat pumps provide a practical method for harnessing energy from waste heat sources and reducing energy consumption. However, traditional working fluids used in these heat pumps generally contain a significant global warming potential (GWP), which might cause severe greenhouse effects if they are released. The goal of the emphasis on low-GWP (below 150) refrigerants is to further the vapor compression heat pumps. A classification system for vapor compression heat pumps is offered, with different boundaries based on the needed heat temperature and advancements in heat pump technology. A heat pump could be classified as a low temperature heat pump (LTHP), medium temperature heat pump (MTHP), high temperature heat pump (HTHP), or ultra-high temperature heat pump (UHTHP). The HTHP/UHTHP border is 160 °C, the MTHP/HTHP and LTHP/MTHP limits are 100 and 60 °C, respectively. The refrigerant is one of the most important parts of a vapor compression heat pump system. Presently, the main ways to choose a refrigerant are based on ozone depletion potential (ODP) and GWP, with GWP being the lowest possible value and ODP being zero. Pure low-GWP refrigerants, such as natural refrigerants (R718 and R744), hydrocarbons (R290, R600), hydrofluorocarbons (R152a and R161), hydrofluoroolefins (R1234yf, R1234ze(E)), and hydrochlorofluoroolefin (R1233zd(E)), were selected as candidates for vapor compression heat pump systems based on these selection principles. The performance, characteristics, and potential uses of these low-GWP refrigerants in heat pump systems are investigated in this paper. As vapor compression heat pumps with pure low-GWP refrigerants become more common, more and more low-grade heat can be recovered. This means that energy consumption would decrease. The research outputs showed that the refrigerants R718 for UHTHP application, R1233zd(E) for HTHP application, R600, R152a, R161, R1234ze(E) for MTHP, and R744, R290, and R1234yf for LTHP application are appropriate. The selection of an appropriate refrigerant should, in fact, take into consideration two different environmental and thermodynamic points of view. It might be argued that, depending on the situation, a trade-off between these two groups should constantly be considered. The environmental approach is now far stronger than it was previously, according to the European Union regulations. This will promote sustainable energy consumption and social development in addition to assisting in the reduction of greenhouse gas emissions and the management of global warming.

Keywords: vapor compression, global warming potential, heat pumps, greenhouse

Procedia PDF Downloads 33
2281 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features

Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski

Abstract:

The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.

Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation

Procedia PDF Downloads 115
2280 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks

Authors: Anusha M., V. Srikanth

Abstract:

Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.

Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios

Procedia PDF Downloads 561
2279 The Review for Repair of Masonry Structures Using the Crack Stitching Technique

Authors: Sandile Daniel Ngidi

Abstract:

Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities.

Keywords: brickforce, crack-stitching, masonry concrete, reinforcement, wall panels

Procedia PDF Downloads 177
2278 Adapting Strategies of Subaltern Counterpublics under Coronavirus-Related Restrictions

Authors: Alisa Sheppental

Abstract:

The focus of this paper is the impact of coronavirus-related restrictions on the legitimacy and efficacy of subaltern counter publics and political resistance. Both difficulties and alterations of strategies needed to be considered by modern political movements within the counter-public sphere will be illustrated based on recent examples of protests in Hong Kong, Thailand, Belarus, Poland, and France. The dynamics of the modern globalized world have previously required a high level of adaptability, which resulted in a number of new features of modern political resistance in contrast with previous decades, including digitalization of protests and higher involvement of previously fewer active citizens (women, elderly, people with disabilities, etc.) However, a global pandemic situation, along with massive restrictions of daily lives, provide new input for both theoretical and empirical analysis. The following paper represents an attempt to summarize coping and adapting strategies of subaltern counter publics and activist groups under coronavirus-related restrictions.

Keywords: citizenship, political activism, subaltern counterpublics, discourse ethics

Procedia PDF Downloads 130
2277 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 262
2276 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 232
2275 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 274
2274 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 328
2273 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture

Authors: Riktesh Srivastava

Abstract:

Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.

Keywords: CLV, RFM, revenue, recency, frequency, monetary value

Procedia PDF Downloads 220
2272 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 140
2271 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell

Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.

Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases

Procedia PDF Downloads 532
2270 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
2269 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 659
2268 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures

Authors: José Luis Carrillo-Medina, Roberto Latorre

Abstract:

Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.

Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network

Procedia PDF Downloads 492
2267 The Two Question Challenge: Embedding the Serious Illness Conversation in Acute Care Workflows

Authors: D. M. Lewis, L. Frisby, U. Stead

Abstract:

Objective: Many patients are receiving invasive treatments in acute care or are dying in hospital without having had comprehensive goals of care conversations. Some of these treatments may not align with the patient’s wishes, may be futile, and may cause unnecessary suffering. While many staff may recognize the benefits of engaging patients and families in Serious Illness Conversations (a goal of care framework developed by Ariadne Labs in Boston), few staff feel confident and/or competent in having these conversations in acute care. Another barrier to having these conversations may be due to a lack of incorporation in the current workflow. An educational exercise, titled the Two Question Challenge, was initiated on four medical units across two Vancouver Coastal Health (VCH) hospitals in attempt to engage the entire interdisciplinary team in asking patients and families questions around goals of care and to improve the documentation of these expressed wishes and preferences. Methods: Four acute care units across two separate hospitals participated in the Two Question Challenge. On each unit, over the course of two eight-hour shifts, all members of the interdisciplinary team were asked to select at least two questions from a selection of nine goals of care questions. They were asked to pose these questions of a patient or family member throughout their shift and then asked to document their conversations in a centralized Advance Care Planning/Goals of Care discussion record in the patient’s chart. A visual representation of conversation outcomes was created to demonstrate to staff and patients the breadth of conversations that took place throughout the challenge. Staff and patients were interviewed about their experiences throughout the challenge. Two palliative approach leads remained present on the units throughout the challenge to support, guide, or role model these conversations. Results: Across four acute care medical units, 47 interdisciplinary staff participated in the Two Question Challenge, including nursing, allied health, and a physician. A total of 88 questions were asked of patients, or their families around goals of care and 50 newly documented goals of care conversations were charted. Two code statuses were changed as a result of the conversations. Patients voiced an appreciation for these conversations and staff were able to successfully incorporate these questions into their daily care. Conclusion: The Two Question Challenge proved to be an effective way of having teams explore the goals of care of patients and families in an acute care setting. Staff felt that they gained confidence and competence. Both staff and patients found these conversations to be meaningful and impactful and felt they were notably different from their usual interactions. Documentation of these conversations in a centralized location that is easily accessible to all care providers increased significantly. Application of the Two Question Challenge in non-medical units or other care settings, such as long-term care facilities or community health units, should be explored in the future.

Keywords: advance care planning, goals of care, interdisciplinary, palliative approach, serious illness conversations

Procedia PDF Downloads 101
2266 Comparative Analysis of Automation Testing Tools

Authors: Amit Bhanushali

Abstract:

In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.

Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository

Procedia PDF Downloads 98
2265 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
2264 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 117
2263 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.

Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution

Procedia PDF Downloads 297
2262 Library on the Cloud: Universalizing Libraries Based on Virtual Space

Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan

Abstract:

Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.

Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access

Procedia PDF Downloads 661
2261 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 337